Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства полимерных связующих и матриц на их основе

Свойства полимерных связующих и матриц на их основе  [c.49]

СВОЙСТВА ПОЛИМЕРНЫХ СВЯЗУЮЩИХ и МАТРИЦ НА ИХ ОСНОВЕ  [c.49]

Создание современных инженерных сооружений, конструкций и изделий высокого качества и надежности связано с использованием высокопрочных материалов с заданными физико-механическими свойствами. К таким материалам относятся композиционные полимерные материалы, изготовленные на основе высокопрочного наполнителя в виде непрерывных нитей, тканей, рубленых волокон, шпона и т. д. и связующей матрицы.  [c.3]


Углепластики являются сравнительно новыми материалами. Поэтому в настоящее время весьма затруднительно обобщать их свойства. Это связано не с тем, что накоплено мало данных о характеристиках углепластиков, а с тем, что эти материалы в настоящее время продолжают интенсивно совершенствоваться. Кроме того, как и для композиционных материалов вообще, существует значительное многообразие сочетаний углеродных волокон и полимерных матриц и связанное с этим многообразие свойств углепластиков. В данной главе на основе японской и зарубежной информации сделана попытка обобщить наиболее характерные свойства, отражающие особенности углепластиков.  [c.132]

Композиционные материалы — это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим - упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна - стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, боридов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемыми значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т. п.  [c.170]

Правильный выбор типа полимерной матрицы имеет также значение для формирования прочностных свойств рассматриваемого класса материалов. Данные табл. 5.16 показывают, что прочность при сдвиге композиционных материалов на связующем ЭДТ-10 более чем в 3 раза превышает аналогичную характеристику материалов на основе матрицы ФН. Последний тип материалов имеет и значительно больший разброс значений прочности при сдвиге. Существенное расхождение имеет место так-  [c.158]

Предлагаемая советским специалистам книга Углеродные волокна , изданная в 1984 г. в Японии под редакцией проф. С. Симамуры, представляет собой коллективную монографию, подготовленную четырнадцатью ведущими японскими специалистами, и охватывает самые различные аспекты сравнительно молодой, но весьма перспективной области современного материаловедения. В книге рассматриваются вопросы получения углеродных волокон и армированных ими композиционных материалов, структура и свойства волокон и полимерных связующих для углепластиков, характеристики композиций на основе полимерных и металлических матриц, технология изготовления из низ элементов конструкций, а также применение этих материалов в самых разнообразных изделиях - от спортивного снаряжения до космических аппаратов.  [c.5]


Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использо-Bainie такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось ие вполне точным. Само понятие композиционный уже указывает на присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря на несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например иесмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ухудшению механических свойств композиционных материалов, оказывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность.  [c.287]

Оценка аппретирующих добавок, улучшающих связь между упрочнителем и полимерной матрицей, проводилась непосредственно по результатам физико-химических испытаний композитов. Однако на основе только экспериментальных данных нельзя достаточно полно объяснить природу адгезионной связи. Несомненно, любая научная интерпретация явлений на поверхности раздела должна коррелировать с практически получаемыми ха-рактеристикам(и (кампознтав. Поокольку даже 1К райне малые аппретирующие добавки оказывают сильное влияние на свойства композитов, то, очевидно, изучение механизма связывания оказывается полезным для выяснения природы адгезии органического полимера к поверхности минерального волокна.  [c.15]

Кремнийорганические смолы в промышленности получают гидролизом смесей хлорсиланов. В основную цепь макромолекулы входят силоксановые связи. Это довольно дорогие смолы, однако по ряду свойств в отвержденном состоянии, таких как кратковременная устойчивость при температуре в интервале 250—500°С и высокие показатели электроизоляционных свойств стеклотексто-литов на их основе они превосходят материалы на основе феноло-и меламиноформальдегидных смол (см. [5] дополнительного списка литературы). Пресс-порошки на основе кремнийорганических смол, стеклянных или асбестовых волокон и соответствующих катализаторов производят в промышленности в небольших количествах и они дороже даже фторопластов. Долго не могли найти доступной полимерной матрицы, длительно работающей в температурном интервале 150—250 °С (промежуточной между эпоксидными полимерами и полиимидами), которая сочетала бы различные свойства при умеренной стоимости. До некоторой степени ряд полимеров, полученных реакцией Фриделя — Крафтса и имеющих структуру, промежуточную между полифениленами и фенольными смолами, удовлетворяют этим требованиям и начинают широко использоваться в производстве композиционных материалов.  [c.25]

Нарядз с полимерными матрицами в композиционных материалах можно широко варьировать наполнители, причем в одном материале можно использовать два или более наполнителей, каждый из которых образует отдельную фазу. Неограниченная вариабельность состава композиционных материалов создает большие трудности при описании и обобщении их свойств. Свойства композиционных материалов определяются не только свойствами и соотношением компонентов, но и в значительной степени характером распределения частиц наполнителей, их формой и размерами. Очевидно, что свойства стеклопластиков в решаюш,ей степени зависят от того, использованы ли при их производстве ориентированные волокна или тонкодисперсные порошки. В связи с этим возникает необходимость классификации и описания важнейших типов наполнителей, используемых в производстве композиционных материалов на основе полимерной матрицы. Выбор наполнителя зависит главным образом от тех свойств, которые он должен придать материалу с учетом стоимости и его совместимости с полимерной матрицей.  [c.369]


Химическая деструкция связующего существенно отражается на эксплуатационных свойствах стеклопластиковых изделий. Так, прочность труб из стеклопластика на основе связующего ПН-1 после одного месяца эксплуатации в условиях воздействия воды при повьпиенных температурах снижается на 35%. В случае использования гидролитически стойких смол необратимое снижение прочности происходит в результате нарушения связи между компонентами и выщелачивания стеклонаполнителя. Влага проникает к стекловолокну, мигрируя по каналам и порам или диффундируя через полимерную матрицу. Достигая стеклонаполнителя, вода накапливается в дефектах межфазного слоя и с течением времени вызывает вьцце-лачивание поверхности волокна с образованием геля кремневой кислоты. Разбухание геля создает растягивающие усилия, что приводит к появлению трещин в стекловолокне (перпендикулярно к его оси). Такие трещины  [c.130]


Смотреть страницы где упоминается термин Свойства полимерных связующих и матриц на их основе : [c.64]    [c.38]    [c.21]   
Смотреть главы в:

Композиционные материалы  -> Свойства полимерных связующих и матриц на их основе



ПОИСК



Основа (матрица)



© 2025 Mash-xxl.info Реклама на сайте