Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Простейшие механические модели вязкоупругого поведения

Простейшие механические модели вязкоупругого поведения  [c.279]

Простейшие механические модели вязкоупругого поведения ( 9.1-9.3)  [c.293]

Простейшие модели вязкоупругого поведения. Дифференциальная форма связи между напряжениями и деформациями. Для описания одномерного процесса деформирования вязкоупругих сред могут быть использованы механические модели.  [c.140]


Общий характер механического поведения линейных вязкоупругих систем в гармонических режимах нагружения качественно иллюстрирован на примере простейшей механической модели в разделе 1.3. Для количественного описания временных зависимостей Е и Е", например, в соотношениях (1.3.11) оказывается недостаточным одно характерное время т. Поэтому вводится набор времен т. Времена т распределяются по тем или иным законам, которые описываются функциями распределения [2, 5], или спектрами (см., например, Приложение II).  [c.155]

Мы получили уравнения (6-4.37) и (6-4.38) из уравнений линейной вязкоупругости применительно к описанию поведения некоторых реальных материалов, выходящих и за пределы малых деформаций. Ввиду этого уравнения (6-4.37) и (6-4.38) описывают различное реологическое поведение, хотя они и эквивалентны в предельном случае малых деформаций (см. обсуждение, следующее за уравнением (6-3.1)). С другой стороны, уравнения такого же типа можно получить при рассмотрении простых одномерных моделей, включающих пружинки и амортизаторы , и соответствующем обобщении этих моделей на трехмерную форму относительных механических уравнений, инвариантных относительно системы отсчета. По-видимому, имеет смысл проиллюстрировать этот метод, который оказывается полезным для понимания топологических свойств получающихся функционалов.  [c.239]

Для неравновесных условий нагружения могут быть выделены нестационарные (неустановившиеся) и стационарные (установившиеся) периоды процесса, в которых соответственно соотношение напряжение а — деформация е зависит от времени нагружения и не зависит от него, что иллюстрируется ниже на примере изотермического нагружения при малых деформациях простейших линейных упруговязких и вязкоупругих систем. Механическое поведение этих систем при однородном растяжении может быть моделировано комбинацией чисто упругих (пружин) и вязких (поршней в вязкой среде) элементов, подчиняющихся законам Гука и Ньютона для одноосного нагружения и представленных на рис. 1.3.1. Более подробные сведения о реакции различных вариантов моделей на внешние условия нагружения можно найти в монографиях [4, 24, 26, 68]. Уравнения состояния таких систем определяются из следующих условий  [c.32]

Глава посвящена влиянию вязкоупругости на термомехаиическое поведение и срок службы композитов с полимерной матрицей. В первую очередь коротко рассмотрено линейное вязкоупругое поведение полимерных смол при температурах выше и ниже температуры стеклования. Далее показан простой способ учета этого поведения при оценке эффективных термомеханических свойств композитов и анализе остаточных напряжений, являющихся следствием термической и химической усадки компонент этих материалов в процессе переработки. Затем изложен анализ колебаний и распространения волн в диапазоне упругих свойств композитов. Особое внимание при этом уделено использованию алгоритма быстрого преобразования Фурье ), Разделы, посвященные линейной вязкоупругости, завершаются описанием процессов трещинообразования на микро- и макроуровне при помощи аналитических методов и алгоритма FFT, В главу также включено обсуждение предварительных вариантов моделей, позволяющих учесть влияние статистической природы дефектов на нелинейное механическое поведение композитов и характер их разрушения под действием переменных во времени нагрузок.  [c.180]



Смотреть страницы где упоминается термин Простейшие механические модели вязкоупругого поведения : [c.39]    [c.97]   
Смотреть главы в:

Теория и задачи механики сплошных сред  -> Простейшие механические модели вязкоупругого поведения



ПОИСК



Вязкоупругость

Модели механические

Модель вязкоупругая

Поведени

Простейшие модели



© 2025 Mash-xxl.info Реклама на сайте