Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определяющие уравнения наследственного типа

При решении линейных и нелинейных вязкоупругих соотношений особую роль играют методы определения характеристик материала, которые в случае уравнения наследственного типа сводятся к отысканию ядер ползучести и релаксации. Если ядра заданы аналитически, то их параметры определяют путем аппроксимации соответствующих экспериментальных данных. Из-за  [c.33]

Для построения наследственных кинетических уравнений повреждений типа (3.8) необходимы испытания на длительное разрушение при постоянных напряжениях с периодическими разгрузками различной длительности. Если отдых материала во время разгрузок увеличивает общую долговечность, то это и свидетельствует о наличии свойств наследственности, хотя ядро интегрального уравнения определяется с помощью кривой статической усталости.  [c.99]


Поскольку для металлических материалов сопротивление определяется мгновенными условиями нагружения (скоростью пластического деформирования) и мгновенной структурой материала в момент регистрации напряжений, влияние истории нагружения связано с изменением структуры материала в зависимости от процесса предшествующего нагружения. В связи с этим интегральные наследственные уравнения можно рассматривать как удобный метод аппроксимации экспериментальных данных путем выбора параметров ядра (чаще всего используются ядра типа Абеля или дробно-экспоненциальные функции), обеспечивающих удовлетворительное соответствие экспериментальным данным. Этим объясняется непригодность таких уравнений для описания процессов деформирования с резким изменением скорости, которые дают наиболее рельефное проявление Б экспериментальных исследованиях чувствительности материала к истории предшествующего нагружения [50].  [c.48]

Заметим, что формула Дюгамеля (1.12) может быть использована не только для решения дифференциального уравнения типа теплопроводности, но и для некоторых других видов линейных дифференциальных уравнений, содержащих частные производные по времени. Смысл формулы Дюгамеля заключается в том, что скорость в какой-либо момент времени в некоторой точке в утри области, занятой вязкой жидкостью, будет определяться не значением скорости на границе в данный момент времени, а изменением значений скорости на границе за всё предшествующее время, начиная с начального момента времени. Таким образом, формула Дюгамеля представляет собой математическое выражение своего рода принципа наследственности в механике неустановившегося движения вязкой жидкости.  [c.306]


Смотреть главы в:

Математическое моделирование процессов обработки металлов давлением  -> Определяющие уравнения наследственного типа



ПОИСК



1.125, 126 — Определяемые

Уравнение определяющее



© 2025 Mash-xxl.info Реклама на сайте