Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скандий - ванадий

Скандий Титан. . . Ванадий Хром . . Марганец.  [c.274]

Поскольку s -состояние заполняется двумя электронами уже у щелочноземельных металлов (II гр.), то при переходе к скандию, титану, ванадию, хрому происходит заполнение rf-оболочки в свобод-  [c.24]

Как известно, в природе вообще, а земной коре в частности, наиболее представлены легкие элементы со сравнительно небольшими атомными массами (весами)— от 1 до 65. Так, из элементов-металлов главных подгрупп чаще других встречаются натрий и калий, магний и кальций, алюминий. Из элементов-металлов побочных подгрупп наиболее распространены скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, и цинк, т. е. верхние элементы всех 10 побочных подгрупп. Более тяжелые аналоги перечисленных выше элементов встречаются в земной коре, как правило, в значительно меньших количествах. Естественно, что их изученность и практическое применение меньше. Поэтому при изучении свойств отдельных элементов-металлов основное внимание следует уделять именно металлам побочных подгрупп. Из всех металлов побочных подгрупп более распространено в земной коре железо, на долю которого приходится 1,5% от всех атомов, составляющих земную кору. Далее следуют титан (2-10 %) и марганец (3-10 2%). Распространенность остальных металлов побочных подгрупп, а также лантаноидов и актиноидов в земной коре невелика (10 —10 атомных процентов)  [c.69]


К КАЛИИ 39.102 Са КАЛЬЦИИ 40,08 S СКАНДИЙ 44.956 Ti ТИТАН 47.90 V ВАНАДИЙ 50,942 Сг ХРОМ 51,996 МАРГАНЕЦ 54,9380 26 Fe 27 Со 28 Ni  [c.908]

К J КАЛИИ g 39,100 г " Си в МЕДЬ 2 63,54 Са. 1 КАЛЬЦИИ S 40,03 г °Zn 8 ЦИНК 2 65,38 S СКАНДИИ 8 44,96 2 Ga 8 ГАЛЛИИ 2 69.72 Ti. 0 ТИТАН 8 47,90 2 Ge в ГЕРМАНИИ 2 72,60 V I ВАНАДИЙ 8 50,95 2 j, r As 8 МЫШЬЯК 2 74,91  [c.368]

Кальций используется для получения редкоземельных металлов, скандия, иттрия, тория, плутония и ванадия главным образом путем восстановления фторидов этих металлов. Все указанные выше процессы проводят в тщательно контролируемой инертной атмосфере, чтобы получить металлы высокой степени чистоты.  [c.21]

Группа V (V, Nb, Та). По существу, твердые растворы не образуются, но растворимость ванадия, ниобия и тантала в расплавленном скандии заметно повышается. Интерметаллические соединения не образуются.  [c.667]

В алюминиевых рудах часто присутствуют редкие металлы галлий, ванадий, стронций, скандий и др. Содержание их измеряется сотыми и тысячными долями процента. Однако при переработке руды на глинозем редкие металлы накапливаются в отдельных промежуточных продуктах производства, из которых могут быть извлечены.  [c.198]

Представления о коллективизации всех валентных электронов И перекрывании р-орбиталей остовных р -оболочек, достаточные для объяснения существования ОЦК структур от щелочных металлов до металлов подгрупп ванадия и хрома, не объясняют стабилизации плотных упаковок при переходе от щелочных к щелочноземельным металлам. Из возрастания числа коллективизированных электронов от 3 до 6 эл/атом при переходе от скандия к хрому не вытекает стабилизация ОЦК структур за счет уменьшения областей плотных упаковок при дальнейшем продвижении от металлов III группы (скандия, иттрия, лантана, актиния) к металлам IV группы (титану, цирконию, гафнию) и переход к ОЦК металлам V—VI трупп (ванадию, ниобию, танталу, хрому, молибдену, вольфраму) (см. рис. 6).  [c.21]

Металлические связи, появляющиеся между ближайшими соседями вдоль направлений (111) вследствие перекрывания (е5)-орбиталей и концентрации d-электронов между ядрами, упрочняют и стабилизируют ОЦК структуру от металлов группы скандия (III гр.) и титана (IV гр.) к металлам VI группы (хром, молибден, вольфрам). Близость электронного строения, определяющая идентичность ОЦК структур, способствуют образованию широких или непрерывных областей ОЦК твердых растворов между тугоплавкими металлами IV—VI групп и создают широкие возможности твердорастворного упрочнения путем взаимного легирования этих металлов. Наряду с повышением высокотемпературной прочности такое легирование в ряде случаев позволяет значительно повысить жаростойкость при газовой коррозии в агрессивных средах. Введение в тугоплавкие ОЦК металлы до 25—30% рения, а также рутения или осмия, которые вследствие неполной ионизации имеют плотную гексагональную структуру, но при растворении в ОЦК металлах передают в коллективизированное состояние все валентные электроны, приводит к сильному повышению пластичности ванадия,, хрома, молибдена и вольфрама ( рениевый эффект ). Такое повышение пластичности хрупких металлов интересно с точки зрения теории легирования и нашло определенное практическое применение  [c.39]


Наибольшим сродством к кислороду отличаются иттрий, торий, гафний, уран, скандий, щелочно- и редкоземельные элементы, титан, цирконий, алюминий, литий. При литье черных, цветных и тугоплавких металлов они действуют как раскислители (восстановители), а на воздухе в состоянии тонкой дисперсности обладают пирофорными свойствами. К металлам с несколько меньшим, но все же значительным сродством к кислороду относятся ванадий, тантал, ниобий, молибден, вольфрам, хром, марганец, цинк, натрий, железо. Слабым сродством к кислороду характеризуются медь, никель, кобальт, свинец, олово, кадмий, висмут, сурьма.  [c.192]

Из -металлов побочных групп сравнительно более активна медь, а из р-металлов — алюминий, кремний, галлий. Об активности алюминия и кремния свидетельствует, в частности, факт существования многочисленных соединений типа алюминидов и силицидов. Среди -металлов высокой активностью отличаются титан, цирконий, ванадий, иттрий, скандий. Их применяют как компоненты, активирующие сцепление металлов с металлами, керамикой, стеклом.  [c.200]

IV 4 19. К Калий 39,100 20. Са, Кальций 40,08 21. 5с Скандий 44,96 22. Т1 Титан 47,90 23. V Ванадий 50,95  [c.12]

К 1 39.1 калий Са 20 40,1 кальций 5с 21 46,0 скандий Ti 22 47.9 титан V 23 60,9 ванадий Сг 24 62,0 хром Мп 26 64.9 марганец Fe 26 Б5Д железо Со 27 68,9 кобальт N1 28 58.7 никель  [c.8]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

КАЛИЙ 1 33.100 г Си 8 медь 2 63.54 Са. 1 КАЛЬЦИИ 8 40.08 2. 1 "°2п 8 ЦИНК 2 65,38 5с СКАНДИИ 8 44,96 г Са 8 ГАЛЛИИ 2 69,72 Т ТИТАН 8 47,90 Се 8 ГЕРМАНИИ 2 72,60 V ВАНАДИЙ в 50.95 2, 8 Аз 8 МЫШЬЯК 2 74,91  [c.22]

IV КАЛИЙ 8 39.100 2 Гя vja. 8 КАЛЬЦИИ 8 40,08 2 5с 1 СКАНДИИ 8 44,96 2 Ti ТИТАН 8 47,90 2 V ВАНАДИЙ 50,95  [c.80]

IV К 19 39.096 Калий Са 20 40.08 Кальций 5е 21 45,10 Скандий Т1 22 48.90 Титан V 23 50 Ванадий  [c.46]

С помощью указанного комплекса аппаратуры изучены карбиды титана, циркония, гафния, ванадия, ниобия, тантала, хрома,бора бориды лантана, церия, празеодима, неодима, самария, гадолиния, иттербия, титана, циркония, ниобия, тантала, железа сульфиды лантана, церия, празеодима, неодима, самария, европия, гадолиния, иттербия, гафния, тантала, хрома, молибдена, вольфрама нитриды индия, скандия, лантана, самария, титана, циркония, гафния, ниобия, бора, алюминия, германия, галлия, кремния, фосфора селениды лантана, празеодима, неодима, самария, европия силициды хрома, лантана фосфиды празеодима и неодима.  [c.141]

Цветные металлы, в свою очередь, подразделяют в зависимости от их физико-механических свойств на ряд групп тяжелые (никель, медь, цинк, олово, свинец), легкие (литий, бериллий, натрий, магний, алюминий, калий, кальций, титан, рубидий, стронций, цезий, барий) благородные (рутений, родий, палладий, серебро, осмий, платина, золото) и редкие, которые, в свою очередь, условно делят на тугоплавкие (ванадий, цирконий, ниобий, молибден, тантал, вольфрам), редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.), рассеянные (германий, селен, рений и др.) и радиоактивные (радий, торий, протактиний, уран).  [c.5]

КАЛИЙ КАЛЬЦИЙ СКАНДИИ ТИТАН ВАНАДИЙ ХРОМ МАРГАНЕЦ ЖЕЛЕЗО КиБАЛЬТ НИКЕЛЬ МЕДЬ цинк ГАЛЛИЙ ГЕРМАНИЙ ммшьяк СЕЛЕН ВРОМ КРИПТОН  [c.49]

Среди титанатов (по аналогии со шпинелями) большей частотой собственных колебаний будут обладать соединения, имеющие массы атомов X, близкие к массе атома титана, т. е. титанаты кальция, стронция и железа. Что касается титанатов ванадия и скандия, то мы не располагаем данными о существовании таких соединений. Кроме того, высокая стоимость окислов этих элементов является причиной, ограничиваюгцей использование их в технике, тем более что в данном случае мы не видим существенных преимуществ перед титанатом кальция.  [c.86]

Изотопы — атомные ядра с одним и тем же порядковым номером, но с разными атомными весами. В настоящее время установлено, что, за исключением фтора, натрия, алюминия, фосфора, скандия, ванадия, марганца, мышьяка, иттрия, ниобия, иода, цезия, лантана, празеодима, гольмия, тулия, тантала, золота, у всех остальных элементов наблюдается изотопия, т. е. каждый из элементов, за исключением указанных выше, состоит из атомов, имеющих ядра, различающиеся атомными весами. Например, водород состоит ил протия (атомный вес 1,0081), дейтерия (атомный вес 2,01417], хром состоит из атомов с атомными весами 50 (4,49%), Si (83,77%), 53(9,437о). 54(2,30%). К настоящему моменту установлено около 280 различных типов атомов, встречающихся в природе (при наличии 88 элементов и около 400 искусственно полученных типов атомных ядер) .  [c.339]


Группа VI (Сг, Мо, W). ОСразованпе ннтсрмсталлических соединений или твердых растворов маловероятно. Это известно на примере вольфрама Растворимость этих расплавленных металлов d расплавленном скандии меньше, чем ванадия, ниобия и тантала.  [c.668]

Показана принципиальная возможность извлечения и концентрирования ряда элементов из морской воды с использованием хелатных смол Хелекс-100 и Пермутит S1005, содержащих аминодвууксусные группировки. Серебро, висмут, кадмий, кобальт, церий, медь, индий, марганец, молибден, скандий, торий, вольфрам, ванадий, иттрий и цинк извлекаются полностью, ртуть, рений и олово — на 85—90% [198].  [c.197]

IV к Калий 39,100 Са 20 нальций 40,09 S 21 Скандий 44,96 Ti 22 Титан 47,90 Y 23 ванадий Ь0,95 Сг 24 Хром 52,01  [c.70]

Главных подгрупп восемь. Это подгруппы лития и, бериллия Ве, бора В, углерода С, азота N. кислорода О, фтора Р и неона Не. К подгруппе лития условно добавляют водород Н, а к подгруппе неона — гелий Не. (Следует иметь в виду, что в некоторых вариантах таблиа водород включают в подгруппу фтора в ряде случаев и в подгруппу лития, и в подгруппу фтора.) Побочных подгрупп десять. Это подгруппы скандия 8с, титана Т1, ванадия V, хрома Сг, марганца Мп, железа Ре, кобальта Со, никеля N1, меди Си и цинка 2п. Счет побочных подгрупп следует начинать с подгруппы скандия (побочной подгруппы III группы) и заканчивать подгруппой цинка (побочной подгруппой II группы). Необходимость именно такой последовательности отсчета будет пояснена ниже.  [c.6]

В отношении многих металлов часто применяют термин редкие (в смысле малоприменяемые). Однако редкость их может вызываться целым рядом причин малой распространенностью в земной коре рассеянностью их присутствия в рудах и минералах при значительном в целом содержании в земле трудностью их выделения из руды или отделения от других металлов еще недостаточной изученностью свойств, ограничивающей применение. К числу таких редких металлов принадлежат литий, рубидий, цезий, бериллий, галлий, индий, таллий, германий. Из элементов побочных подгрупп к редким принадлежат скандий, иттрий, лантан, актиний, цирконий, гафний, ванадий, ниобий, рений. К числу редких, а точнее рассеянных, принадлежат и лантаноиды (церий и др.), на что указывает их старинное название редкоземельные элементы ( земля — старинное название оксидов).  [c.75]

Взаимодействие веществ должно сопровождаться обменом электронов с повышением СВАСК, что означает понижение суммарной свободной энергии системы. При этом одни элементы действуют преимущественно как доноры электронов (например, скандий, титан, иттрий, цирконий), стремящиеся к повышению статистического веса -конфигураций, другие —как акцепторы (например, ванадий, тантал, ниобий, молибден, вольфрам), поскольку для них характерна тенденция к повышению статистического веса -конфигураций. Проявление той или иной тенденции у -металлов зависит от числа электронов на -орбиталях.  [c.202]

Хотя появление металлов вставных декад представляет собою новое развитие идеи химич. активности, а не простую вариацию типичных элементов малых периодов, тем не менее ббльшая часть из них м. б. размещена в те же 7 групп, которые были нами указаны. Мы могли бы ожидать, что вставленная между двухвалентным кальцием и трехвалентным галлием декада металлов будет состоять из металлов двух- или трехвалентных со свойствами, промежуточными между кальцием и галлием. На самом же деле мы имеем вслед за двухвалентным кальцием сразу трехвалентный скандий, затем четырехвалентный титан, пятивалентный ванадий, шестивалентный хром и семивалентный марганец т. е. природа здесь, хотя и в иной форме, но имитирует до известной степени ход валентности в малых периодах. Элементы конца вставной декады Си и Zn также примыкают по некоторым своим свойствам к типичным элементам I и II групп  [c.112]

IV 4 19 39,096 К Калий 20 40,08 Са Кальций 21 45,10 8С Скандий (экабор) 22 Т 47,90 Титан 2Х У50,9> Ванадий  [c.258]

Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]

На ВНИИХТ возлагалась задача создания технологии переработки радиоактивных и редкометаллических руд с получением исходных химических соединений для нужд оборонной промышленности ( фан, торий, литий, бериллий) и зарождающейся атомной энергетики, в том числе конструкционных материалов (цирконий, гафний, тантал, ниобий). В сферу деятельности ВНИИХТа вошли также такие ценные элементы, как молибден, вольфрам, скандий, ванадий, рений, селен, редкоземельные элементы, золото, серебро, металлы платиновой группы, многие из которых присутствуют в урановых рудах. Главными задачами являлись разработка технологий эффективного извлечения зфана и сопутствующих элементов, создание малоотходных экологически безопасных производств, экономное расходование реагентов, материалов и энергоресурсов.  [c.307]

Селен Титан, ванадий, марганец, никель, медь, цинк, алюминий, олово, иттрий, цирконий, молиб- ден, железо, палладий, серебро, кадмий, скандий, лантан, гафний, торий, уран, кобальт, платина, серебро, золото, ртуть, галлий, индий, таллий, сурьма, свинец, висмут (10 5) Экстракция примесей в виде оксихинолинатов и дитизонатов То же 45  [c.15]


Смотреть страницы где упоминается термин Скандий - ванадий : [c.338]    [c.267]    [c.41]    [c.34]    [c.10]    [c.275]    [c.12]    [c.99]    [c.68]    [c.15]    [c.35]    [c.112]    [c.390]    [c.6]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Скандий - ванадий



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Скандий



© 2025 Mash-xxl.info Реклама на сайте