Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Причи ы увеличения осевого давления ротора

Прием нагрузки на турбину должен производиться постепенно, так как этот процесс сопровождается дальнейшим повышением температуры ротора и корпуса, причем увеличение температуры происходит наиболее интенсивно при приеме нагрузки в пределах первой половины мощности турбины. Таким образом, в процесс пуска турбины входит и процесс нагружения ее, так как только под нагрузкой она достигает нормальной рабочей температуры и полного теплового расширения. Во избежание резкого увеличения расхода па ра через турбину и осевого давления на упорный подшипник необходимо следить, чтобы при включении турбогенератора в параллель на общую электросеть и при индивидуальной работе турбогенератора первоначальный наброс нагрузки на него не превышал 5—7% номинальной мощности турбины. Дальнейшее повышение нагрузки следует производить со скоростью не более 3—4%, а вышедшего из ремонта турбогенератора — со скоростью не более 2—3% в минуту по отношению к номинальной мощности турбогенератора. При нагрузке около 15—20% нужно полностью открыть главную парозапорную задвижку турби-126  [c.126]


Прием нагрузки на турбину должен производиться постепенно, так как это сопровождается дальнейшим повышением температуры ротора и корпуса, причем увеличение температуры происходит наиболее интенсивно при приеме нагрузки в пределах первой половины мощности турбины. Таким образом, в процесс пуска турбины входит и процесс нагружения ее, так как только при нагрузке она достигает нормальной рабочей температуры и полного теплового расигирения. Во избежание резкого увеличения расхода пара через турбину и осевого давления на упорный подшипник необходимо следить, чтобы при включении турбогенератора в па-  [c.75]

Кавитационный срыв работы насоса. На рис. 2 показаны переходные процессы, полученные при кавитационном срыве насоса. До срыва насос работал н режиме с коэффициентом напора, близким к номинальному (Я/л2=1) и частотой вращения 10 000 об/мин, биение конца вала составляло 0,2—0,4 мм, вибрация корпуса не превышала 4 g, радиальное усилие было равно 200—400 Н и направлено в сторону меньших сечений спирального ствола. Фазы колебаний по различным направлениям движения ротора достаточно стабильны и характеризуются устойчиво повторяющимися замкнутыми траекториями (ри З,/). При кавитационном срыве коэффициент напора упал до Н1п =0,1 и частота вращения возросла до 33000 об/мин. После прекращения кавитации произошло восстановление исходного режима работы насоса. Общая картина динамического состояния ротора при кавитационном срыве напора существенно изменилась радиальное биение вала увеличилось до 0,7 мм, радиальное усилие достигло 600 Н, причем его направление изменилось на 90°, перепад температуры на подшипнике возрос с до 3°. Сравнительно мало изменялись осевое перемещение ротора и уровень вибраций корпуса насоса. Пульсации давления на входе и выходе из насоса при кавитационном срыве практически полностью исчезли и снова восстановились только после выхода насоса из кавитации. Существенно изменились (см. рис. 3) фазовые траектории колебаний конца вала — произошло увеличение диаметральных размеров замкнутых кривых, свидетельствующее об увеличении амплитуд колебаний по обоим радиальным направлениям, и их расслоение с образованием двойных траекторий, указывающее на появление новой формы колебаний. Кинограммы траекторий движения вала, полученные в условиях  [c.316]



Смотреть страницы где упоминается термин Причи ы увеличения осевого давления ротора : [c.367]   
Смотреть главы в:

Справочник для теплотехников электростанций Изд.2  -> Причи ы увеличения осевого давления ротора



ПОИСК



Осевое "давление 313, XIV

Ротор

Увеличение



© 2025 Mash-xxl.info Реклама на сайте