Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отжиг радиационных нарушений

Отжиг радиационных нарушений  [c.281]

Кристалл приобретает легкую дымчатость. После нескольких месяцев при комнатной температуре центры окрашивания отжигаются Для удаления радиационного окрашивания необходимо нагревать до 750°С Большая часть радиационного окрашивания восстанавливается отжигом при 730° С Изучение механизма радиационных нарушений  [c.148]

Восстановление искаженной структуры происходит постепенно во время отжига. При температурах ниже 400° С внедренные атомы диффундируют и образуют атомно-вакансионные промежуточные пары, которые затем аннигилируют. При температурах отжига от 400 до 1000° С радиационные нарушения восстанавливались в результате образования и расформирования групп внедренных атомов. При температуре отжига выше 1100° С восстановление повреждений, вероятно, происходило при миграции вакансий.  [c.185]


Облучение при комнатной температуре приводит к увеличению прочности и твердости графита и уменьшению электро- и теплопроводности. Абсорбция кислорода графитом усиливается при облучении [185], а реакционная способность графита при наличии радиационного поля увеличивается [60, 95]. Количество энергии, поглощенной решеткой графита (энергия Вигнера), увеличивается во время облучения, что соответствует увеличению энтальпии [226]. Большинство радиационных нарушений в графите может быть удалено при помощи термического отжига после облучения, хотя в некоторых случаях требуется нагрев почти до температуры графитизации. Графит очень чувствителен к радиационному отжигу, вследствие чего облучение при повышенных температурах приводит к понижению числа радиационных нарушений. Далее обсуждается влияние облучения на свойства графитов.  [c.185]

Для подтверждения предложенной теории облученный графит отжигали при 600 и 2800°С перед его окислением вне реактора [122]. Графит, отожженный при 600°С, имел такую же скорость окисления, как облученный, но не отожженный графит. Скорость окисления графита, отожженного при 2800°С, была такой же, как для необлученного графита. Отсюда следует, что увеличение скорости окисления облученного графита происходит вследствие радиационных нарушений структуры, которые не отжигаются при низких температурах.  [c.194]

Изменения различных механических, физических и химических свойств графита, вызванные облучением, могут быть уменьшены за счет отжига при температурах выше температуры облучения. Восстановление радиационных нарушений при термической обработке больше зависит от температуры, чем от продолжительности отжига [2661. Исходное электросопротивление графита, облученного при 35°С и отожженного при 210°С, восстанавливалось на 70% за 25 ч и только на 75% за 700 ч отжига. Графит, облученный при —196°С, восстанавливал радиационные нарушения при температуре ниже —130°С, а изменения тепло- и электропроводности не восстанавливались до температур —70 и —20°С соответственно  [c.198]

При изучении восстановления радиационных нарушений в графите использовали четыре режима отжига [2261  [c.198]

Механизм радиационного отжига очень сложен и окончательно еще не ясен. В большинстве случаев нельзя даже считать, что в процессе отжига происходит рекомбинация части пар, а остальные пары переходят в более стабильное состояние. В качестве вероятного механизма радиационного отжига рассматривалась также возможность группировки вакансий (кластеры) с образованием больших пустот. Как правило, при повышенных температурах все радиационные нарушения исчезают.  [c.281]


Одним из недостатков ионной имплантации и метода радиационного легирования является одновременное с легированием образование в облучаемых кристаллах радиационных нарушений кристаллической решетки, что существенно изменяет электрофизические свойства материала. Поэтому необходимой стадией процесса при получении ионно-легиро-ванных и радиационно-легированных кристаллов является термообработка (отжиг) материала после облучения. Отжиг ионно-имплантированных слоев проводится для активирования имплантированных атомов, уменьшения дефектов кристаллической структуры, образующихся при ионной имплантации и радиационном легировании, и в конечном счете, для создания области с заданным законом распределения легирующей примеси и определенной геометрией. Другими недостатками данного метода легирования являются стоимость облучения и необходимость соблюдения  [c.265]

Лазерный отжиг - процесс восстановления кристаллической структуры твердого тела, нарушенной радиационным воздействием. В отличие от обычного, он позволяет контролировать температуру и время нагрева поверхностных слоев различных материалов на заданную глубину. Лазерный отжиг применяется для полупроводников, диэлектриков, металлов и сплавов. Его особенность состоит в том, что, во-первых, ввиду малой глубины проникновения лазерного излучения (10 +10" см) не происходит нарушений более глубоких слоев во-вторых, время действия лазерного излучения при импульсном облучении может быть чрезвычайно малым (нано- и пикосекундный диапазон).  [c.523]

Спектры выделения запасенной энергии в облученных у-лучами кристаллах СаРг, ЗгРг и ВаРг аналогичны, что свидетельствует об аналогии дефектов, создаваемых излучением, в материалах с одинаковым типом кристаллической решетки. В то же время пики выделения запасенной энергии в СаРг приходятся на более высокие температуры, чем в ЗгРг и ВаРг, а полное выделение запасенной энергии (следовательно, и отжиг радиационных нарушений) в СаРг прекращается также в более высокотемпературной области.  [c.133]

В большинстве случаев полного восстановления радиационных нарушений в графите не происходило вплоть до отжига при температурах, близких к температуре графитизащш. Для определенных условий отжига степень восстановления свойств понижается с увеличением дозы поглощенной энергии при облучении [226].  [c.198]

В табл. 5.3 и 5.4 приведены данные по ударной вязкости облученных углеродистых и низколегированных сталей. Из таблиц видно, что температура перехода материала из пластичного состояния в хрупкое при облучении повышается. Это увеличение может достигать 260° С. Привести все представленные данные в соответствие весьма трудно вследствие различий в геометрии образцов и условиях облучения. Однако Хауторп и Стил сообщили [38], что достигнуто хорошее согласие значений ударной вязкости нескольких сталей, полученных на копровых образцах и образцах Шарпи с V-образным надрезом (рис. 5.4). Эти опыты иллюстрируют также тот факт, что многие радиационные нарушения, если они отражаются на изменении ударной вязкости, могут быть уменьшены или устранены высокотемпературным отжигом (см. табл. 5.3).  [c.242]

Параллельно под руководством И. В. Курчатова проводились исследования, в процессе которых открыты весьма интересные явления, имевшие важнейшее значение для работы реакторов и понимания действия излучения на вещество. При изучении физических свойств графита в условиях интенсивного нейтронного облучения были обнаружены значительные их изменения уменьшение теплопроводности и электропроводности,, изменение объема и механической прочности. Далее было установлено, что при отжиге облученного графита выделяется скрытая энергия, запасенная кристаллической решеткой. Эти исследования позволили выяснить природу радиационных нарушений в графите и решить ряд практических задач, возникших Т1ри проектировании и эксплуатации ядерных реакторов с графитовым замедлителем.  [c.5]


Смотреть страницы где упоминается термин Отжиг радиационных нарушений : [c.200]    [c.221]    [c.491]   
Смотреть главы в:

Влияние облучения на материалы и элементы электронных схем  -> Отжиг радиационных нарушений



ПОИСК



Отжиг

Радиационные нарушения



© 2025 Mash-xxl.info Реклама на сайте