Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о разностных схемах. Аппроксимация дифференциальных уравнений

Теория разностных схем в основном развита для линейных задач и опирается, как отмечалось ранее, на три основных понятия аппроксимацию исходных дифференциальных уравнений, устойчивость вычислительного процесса, сходимость численного метода к решению. Для нелинейных задач теория, как правило, не развита исследование устойчивости в этих случаях сопряжено с большими трудностями и проводится обычно на линейных аналогах конкретной задачи. Например, при исследовании устойчивости задач газовой динамики часто рассматриваются уравнения в акустическом приближении.  [c.232]


Замена исходного дифференциального уравнения разностным приводит к появлению погрешности численного метода, связанной с погрешностью аппроксимации. Для характеристики качества аппроксимации используется понятие ее порядка. Аппроксимация имеет порядок р, если ее погрешность, обусловленная заменой дифференциального уравнения разностным, пропорциональна шагу сетки в степени р. Можно показать, что разностная схема (3.10) имеет первый порядок аппроксимации О (Ах), а (3.12)—второй порядок аппроксимации 0(Дх2). Здесь буква О представляет сокращение слова Order, что в переводе означает порядок .  [c.60]


Смотреть главы в:

Методы и задачи тепломассообмена  -> Понятие о разностных схемах. Аппроксимация дифференциальных уравнений



ПОИСК



570 — Схема дифференциальная

Аппроксимация

Аппроксимация дифференциального

Понятие разностной схемы

Разностная схема

Тон разностный



© 2025 Mash-xxl.info Реклама на сайте