Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни невесомые - Частота собственных

Математический маятник состоит из материальной точки массой М, расположенной на нижнем конце невесомого стержня длиной L, свободно вращающегося вокруг оси, проходящей через его верхний конец (рис. 7.1). Наша задача заключается в том, чтобы найти частоту собственных колебаний маятника. Самый простой путь решения этой задачи — суметь написать в соответствующем виде второй закон динамики F = Afa. Это может быть сделано так же, как и в задаче 7.6. Однако очень поучительно попытаться решить эту задачу, исходя из закона сохранения энергии. Чтобы получить уравнения (18)—(22), можно также исходить и из сохранения момента импульса. Отклонения маятника будем измерять углом 0, который стержень об- разует с вертикалью.  [c.207]


Такого рода собственные колебания (гармоники, модаг) присущи любому упругому тепу, хотя их форма и спектр частот могут быть весьма сложными. По смыслу они аналогичны нормальным колебаниям в связанных системах (см. о. 120-122) в обоих случаях произвольное колебание системы является их суперпозицией. В связанной системе масса системы сосредоточена в телах (пружины невесомы), а упругость - в пружинах (тела абсолютно твердые) поэтому ее называют системой с сосредоточенными параметрами. Такая система состоит из конечного числа тел, она имеет конечное число колебательных степеней свободы и, соответственно, конечное число нормальных колебаний. В сплошном массивном упругом теле (стержень, струна) упругие и инертные свойства, характеризуемые, соответственно, модулями упругости и плотностью вещества, распределены по телу непрерывно. Его можно рассматривать как совокупность бесконечного шсла бесконечно малых элементов соответственно, оно имеет бесконечное число колебательных степеней свободы и как следствие - бесконечное число собственных колебании, как показано на примере закрепленной струны.  [c.139]


Смотреть страницы где упоминается термин Стержни невесомые - Частота собственных : [c.400]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



Невесомость

Стержень невесомый

Стержни газотворные невесомые — Частота собственных

Стержни движущиеся — Расчет невесомые—-Частота собственных

Частота собственная



© 2025 Mash-xxl.info Реклама на сайте