Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квадрат линейного элемента срединной поверхности

В=В (а, р), с помощью которых квадрат линейного элемента срединной поверхности представляется известной формулой  [c.12]

Квадрат линейного элемента срединной поверхности 13 Колебания свободные оболочки 345  [c.444]

В теории пологих оболочек, разработанной В. 3. Власовым, вводится две дополнительные гипотезы. Согласно первой гипотезе геометрия срединной поверхности отождествляется с геометрией на плоскости (евклидовой метрикой). Это означает, что выражение квадрата линейного элемента поверхности  [c.241]


Если квадраты поворотов линейных нормальных к срединной поверхности элементов оболочки прн изгибе всюду пренебрежимо малы по сравнению с единицей  [c.197]

Разрешающие уравнения теории пологих оболочек. Рассмотрим тонкую упругую 1 зотропную оболочку постоянной толщины /i. Будем считать, что выполняются гипотезы Кирхгофа — Лява линейные элементы, перпендикулярные к срединной поверхности оболочки до деформации, остаются прямолинейными и перпендикулярными к деформированной срединной поверхности, а также сохраняют неизменной свою длину нормальные напряжения па площадках, параллельных срединной поверхности, пренебрежимо малы по сравнению с другими напряжениями. В теории пологих оболочек, кроме этих допущений, вводится еще упрощающее предположение о том, что срединная пове рхность оболочки может быть задана в эвклидовой метрике. Отнесем срединную поверхность оболочки к декартовым координатам х, у я квадрат линейного элемента поверхности представим в виде  [c.271]

Уравнения динамической теории оболочек с учетом инерции вращения и деформации поперечного сдвига в криволинейной ортогональной системе координат выведены Р. М. Naghdi 3.142] (1957). Его построение в значительной мере основано на исследованиях Е. Ре1з5пег а и других авторов [2.184—2.18 ] (1944—1947), [3.93] (1950), 3.152] (1952). Обозначим символами 1 и криволинейные координаты точки срединной поверхности оболочки, характеризуемой главными радиусами кривизны и / г, а буквой — координату в направлении внешней нормали к срединной поверхности. Соответствующие орты tl, t2 и п образуют правую систему, В ортогональной системе координат имеем выражения для квадрата линейного элемента  [c.193]


Смотреть страницы где упоминается термин Квадрат линейного элемента срединной поверхности : [c.198]   
Общая теория анизотропных оболочек (1974) -- [ c.13 ]



ПОИСК



Квадрат

Линейный элемент

Поверхности Линейный элемент

Поверхность срединная



© 2025 Mash-xxl.info Реклама на сайте