Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтониан редуцированный БКШ

Прикладные способы решения задач динамической оптимизации обтекания. Пусть в текущее выражение для мощности сил сопротивления управляющие воздействия в явном виде не входят. Тогда текущее значение мощности сил сопротивления должно однозначно определяться реализовавшейся частью фазовой траектории системы. В этой ситуации задачи динамической оптимизации первого типа редуцируются к классическим вспомогательным задачам стандартно [10]. В таких задачах динамические ограничения состоят из уравнения для работы сил сопротивления и кинематических связей механической системы. Роль управлений берут па себя импульсы — производные обобщенных координат. Так построенная вспомогательная задача по форме принадлежит к числу задач классического вариационного исчисления и для ее исследования может быть применен аппарат, изложенный в подразделе 4.2. Так оно и есть в тех случаях, когда система состоит из тел с гладкой поверхностью. Если в ее состав входят тела с кусочно-гладкой поверхностью (например, цилиндрические тела), то в пространстве обобщенных координат и скоростей исходной задачи появляются многообразия, на которых проекция этих тел на плоскость, перпендикулярную вектору скорости их центра масс, а следовательно, и гамильтониан теряет свойство дифференцируемости. Оптимальные управляющие силы и моменты находятся из уравнений динамики рассматриваемых систем.  [c.41]


Редукция исходной задачи. Поставленная задача имеет ряд особенностей, отличающих ее от классических задач оптимального управления. Во-первых, она является нерегулярной [26]. Действительно, гамильтониан линейно зависит от управляющих воздействий Г, и и, следовательно, уравнения Эйлера Лангранжа не являются источником для их определения. Во-вторых, как будет показано, оптимальные программные управления должны иметь двухимиульсную структуру, что приводит к скачкообразному поведению скоростей и ф в начальный и завергпающий момент времени. Это обстоятельство порождает проблему перемножения в выражении для мощности Ш разрывной скорости V на импульсную управляющую силу и разрывной угловой скорости ш на импульсный момент. Поэтому возникает потребность редуцировать задачу 1.1 к вспомогательной, имеющей структуру классической задачи динамической оптимизации. Пиже такая редукция делается по схеме, описанной в начале главы.  [c.149]

Поставленная задача имеет те же особенности, что и задача для стационарного двухзвенного манипулятора. Она также является нерегулярной, поскольку гамильтониан линейно зависит от управляющих воздействий Р, 1/1, 172 и, следовательно, уравнения Эйлера-Лагранжа не являются источником для их определения. Будет показано, что оптимальные программные управления должны иметь двухимиульсную структуру. Это приводит к скачкообразному поведению скоростей X, ф, д в начальный и завершающий моменты времени. Такое поведение скоростей звеньев ТМ порождает проблему перемножения в выражении для мощности (3.2) разрывных скоростей на импульсные управляющие силу и моменты. Поэтому возникает потребность редуцировать задачу 3.1 к вспомогательной, имеющей структуру классической задачи динамической оптимизации. Схема, описанная в начале главы, позволяет осуществить указанный переход.  [c.169]

Поставленная задача имеет ряд особенностей, отличающих ее от классических задач оптимального управления. Во-первых, она является нерегулярной. В самом деле, гамильтониан линейно зависит от управляющих воздействий Р, и, ..., ип и, следовательно, уравнения Эйлера-Лангранжа не являются источником для их определения. Во-вторых, как будет показано, оптимальные программные управления должны иметь двухимпульсную структуру, что приводит к скачкообразному поведению скоростей х, ф- ,, фп в начальный и завершающий моменты времени. Это обстоятельство порождает проблему умножения в выражении для мощности (4.1) разрывных скоростей на импульсные управляющие силу и моменты. Вот почему возникает основание редуцировать задачу 4.1 к вспомогательной, имеющей структуру классической задачи динамической оптимизации. Ниже такая редукция делается с использованием схем, описанных в начале главы.  [c.178]



Смотреть страницы где упоминается термин Гамильтониан редуцированный БКШ : [c.163]   
Теория твёрдого тела (1972) -- [ c.563 ]



ПОИСК



Гамильтониан



© 2025 Mash-xxl.info Реклама на сайте