Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стокса Коши — Грина

XIX столетие, в особенности его вторая половина, было эпохой замечательных успехов математической физики, Пуассон, Коши, Грин, Кирхгоф и особенно Стокс и Релей — вот очень неполный перечень имен, если его можно считать достаточным. Однако, за исключением обсуждения Стоксом вопроса о природе естественного и частично поляризованного света как суперпозиции многих поляризованных волн (разд. 5.13 этой книги), основные проблемы оптики не были решены. Поиски направлялись скорее на умение математически формулировать сложные явления, чем на проникновение в физическую сущность простых явлений. Были найдены координатные системы, в которых волновое уравнение допускает разделение переменных. Толкование Френелем принципа Гюйгенса было математически обосновано Кирхгофом. Бесселевы и родственные им функции стали могущественным оружием. Проблемой, типичной для той эпохи, было рассеяние света однородным шаром, что является одной из главных тем этой книги. Она оказалась одной из весьма трудных проблем, и, хотя многие частные случаи были рассмотрены ранее, ее полное решение было сформулировано Ми только в 1908 г.  [c.17]


Список возглавляет Пуассон (рис.1.А.1). Он первым исследовал уравнения движения Р- и S-волн (1828). В 19 веке, другие ученые, проявившие интерес к проблеме распространения волн, разработали теорию упругой среды. Среди них можно назвать Стокса, Кирхоффа, Коши, Грина, Рэлея, Нотта (Knott), Кельвина и Ламе.  [c.1]

В работах Пуассона (1828) и Стокса (1849) четко установлена возможность существования в неограниченной изотропной упругой среде двух типов волн, распространяющихся с различной скоростью. Одна из них характеризуется безвихревым изменением объема (безвихревая продольная волна), другая связана с искажением формы (эквиволюмиальная поперечная волна). Открытие этих типов волн способствовало появлению трудностей в толковании исходной гипотезы Френеля. Особенно сильно эти трудности проявились при рассмотрении задачи об отражении и преломлении плоских волн на границе раздела двух упругих сред. В работах Коши (1830— 1836) и Грина (1839) установлено, что для выполнения шести граничных условий, выражающих непрерывность смещений и напряжений на границе раздела, необходимо учитывать как поперечные, так и продольные волны. Однако продольные световые волны в экспериментах не были обнаружены. Интересно, что открытые Рентгеном (1895) новые лучи вначале отождествлялись рядом физиков (в том числе и автором открытия) с продольными световыми волнами.  [c.9]

Разработку новых методов интегрирования дифференциальных уравнений динамики мы находим главным образом в трудах Гамильтона, французского ученого Пуассона (1781—1840) и выдающегося немецкого математика Якоби (1804—1851). В связи с прогрессом машиностроения, железнодорожной и строительной техники, с необходимостью исследования -движения тел в сопротивляющейся среде в XIX в. и в особенности в текущем столетии весьма быстро и успешно развивается механика сплошной среды — гидро- и аэромеханика и теория упругости. Развитие этих разделов теоретической механики, представляющих собой в настоящее время обширные самостоятельные дисциплины, связано с именами таких крупнейших ученых, как Пуассон, Ляме, Навье, Коши, Сен-Венан (во Франции), Гельмгольц, Кирхгоф, Клебш, Мор, Прандтль (в Германии), Стокс, Грин, Томсон, Рэлей (в Англии) и многих других.  [c.22]

Теория упругости, развитая Пуассоном и Коши на базе принятой тогда гипотезы материальных точек, связанных действием центральных сил, была применена ими, а также Ламе (Lame) и Клапейроном ( lapeyron) к ряду проблем о колебаниях и об упругом равновесии таким образом была создана возможность экспериментальной проверки следствий из этой теории однако прошло немало времени, пока надлежащие эксперименты были поставлены. Пуассон применил теорию к изучению распространения волн в неограниченной упругой изотропной среде. Он нашел два типа волн, которые на большом расстоянии от источника возмущения можно считать соответственно продольными и поперечными из его теории вытекало, что отношение скоростей распространения этих двух типов волн равно 1 ). Коши применил свои уравнения к вопросу о распространении света как кристаллических, так и в изотропных телах. Эта теория в ее приложении к оптике вызвала возражения Грина (Green) с ее статической стороны она позже оспаривалась Стоксом Грин не был удовлетворен гипотезой, которая лежала в основе теории, и искал другого обоснований критика Стокса относилась скорее к процессу дедукции и. к некоторым частным результатам.  [c.24]



Смотреть страницы где упоминается термин Стокса Коши — Грина : [c.7]    [c.26]    [c.26]    [c.31]   
Первоначальный курс рациональной механики сплошных сред (1975) -- [ c.101 ]



ПОИСК



Грина

Коши)

Стокс



© 2025 Mash-xxl.info Реклама на сайте