Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграмма состояний алюминий азот алюминий—кислород

Влияние легирующих элементов яа структуры титановых сплавов может быть представлено на следующих трех схемах диаграмм состояний. На рис. 32, а приведена диаграмма сплавов, содержащих элементы, стабилизирующие модификацию а. Как показывает диаграмма, с увеличением количества легирующего элемента в сплаве повышается температура существования модификации а. Такое влияние на структуру оказывают кислород, азот, углерод и алюминий, образующие твердые растворы с титаном. Эти элементы уменьшают устойчивость р-фазы и способствуют переходу ее в а-фазу. Как правило, такие сплавы сохраняют структуру твердого раствора а и изменить ее термической обработкой не удается.  [c.92]


Системы с образованием а-фазы по перитектоидной реакции (рис. IV. 21, г). Диаграммы состояния такого типа наблюдаются в системах титана с углеродом, алюминием, кислородом и азотом.  [c.399]

Диаграммы состояния с расширенной а-областью системы циркония с алюминием, кислородом, оловом и азотом.  [c.443]

Вводимые в титан элементы влияют на полиморфизм титана. Элементы, повышающие температуру а -превращения, называются а-стабилизаторами (так как они расширяют -область на диаграмме состояния — рис. 163, б). Такими элементами являются алюминий, кислород (О2), азот (N2) и углерод.  [c.280]

Вопрос о влиянии незначительных примесей и металлических добавок иа механические свойства редкоземельных металлов мало изучен для иттрия эти данные известны [14]. Обычные примеси элементов внедрения (углерод, азот, кислород и водород), если они присутствуют в малом количестве, слабо влияют на пластичность и прочность иттрия, чем последний разительно отличается от большей части прочих металлов. Твердость, пластичность н предел текучести иттрия больше всего зависят от предшествующей термообработки, ориентировки зерен и степени наклепа. Титан, ванадий и хром дают с иттрием сходные диаграммы состояния, в которых эвтектика смещена к богатому иттрием краю диаграммы. В копцеитращ1и до 5"6 эти металлы не оказывают вредного влияния на пластичность иттрия. Кремний, алюминий, железо н никель малорастворимы в иттрии, так что в концентрации до 0,5% они почти не отражаются на прочности и величине предела текучести иттрия. В пределах до 5% их содержания пластичность иттрия понижается.  [c.602]

Пример зависимости формирования DX-центров от некоторых из упомянутых условий — структуры кристалла, зарядового состояния примеси и внешнего гидростатического давления демонстрируют расчеты [63] примесей О, Si в вюртцитоподобной (в) и сфалеритоподобной (с) полиморфных модификациях A1N, GaN. Вычисления проведены в рамках теории функционала электронной плотности самосогласованным методом неэмпирического псевдопотенциала в моделях 32- и 72-атомных сверхячеек. На конфигурационной диаграмме (рис. 2.8) четко прослеживается образование глубокого DX-цент-ра при сдвиге атома кислорода в анионном состоянии (О ) вдоль направления [0001] в e-AlN. Корреляционная энергия DX-конфи-гураций, в соответствии с (2.1), рассчитывалась как U = Е + Е -- 2Е , где Е > — энергия образования дефекта в зарядовом состоянии q. Видно (см. табл. 2.4), что для О 1/ < 0 при значительном релаксационном смещении примеси, тогда как для нейтрального (и катионного) состояний дефектов дополнительные (метаста-бильные) минимумы Е > отсутствуют, и их наиболее устойчивой позицией является узел замещаемого элемента (азота). Любопытно, что для -A1N DX-состояний для примесного кислорода не возникает. Этот факт объясняют [63] различиями во взаимодействиях 0 с атомами матрицы, составляющими третью координационную сферу дефекта. В e-AlN третью сферу О" в направлении [0001] образуют атомы А1, рис. 2.9. Значительный релаксационный сдвиг 0 ( 0,9 А) уменьшает дистанцию О—А1 от 3,1 A (в нерелаксированной решетке) до -2,06 A, что лишь на -0,2 A больше равновесного состояния А1—О (1,89 А) в оксидах алюминия. Это указывает на причину формирования стабильного DX-центра в e-AlN как следствие образования сильной ковалентной связи А1—О. Наоборот, в -AlN ближайший атом А1 в  [c.48]



Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.508 ]



ПОИСК



Азот

Алюминий — азот

Алюминий — кислород

Диаграмма состояний алюминий азот ванадий—кислород

Диаграмма состояний алюминий азот вольфрам—кислород

Диаграмма состояний алюминий азот железо—кислород

Диаграмма состояний алюминий—азот 502----алюминий—бор

Диаграмма состояния

Кислород



© 2025 Mash-xxl.info Реклама на сайте