Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрица плотности эволюция во времени

С открытием лазеров как источников коротких импульсов излучения в оптическом диапазоне электромагнитных волн появилась возможность наблюдения фотонного эха [67], являющегося оптическим аналогом спинового эха, а также свободного распада электронной поляризации [68] и других эффектов [69-71], обусловленных сложением фаз, т. е. когерентностью атомного ансамбля. Как мы увидим ниже, эволюция во времени недиагональных элементов матрицы плотности примесного центра определяет свободное затухание поляризации, различные типы фотонного эха и некоторые другие нелинейные явления. Эти эффекты получили название переходных. Их можно наблюдать лишь после возбуждения образца достаточно короткими световыми импульсами. Среди переходных эффектов наибольший интерес в настоящее время вызывает фотонное эхо, превратившееся в главный инструмент для исследования фазовой и энергетической релаксации электронных состояний примесных центров в твердых растворах. Достижениям теории в области описания фотонного эха и посвящена в основном данная глава.  [c.195]


Речь пойдет о начальном этапе эволюции системы из некоторого, вообще говоря, неравновесного состояния, описываемого статистическим оператором ( о) Хотя эта задача имеет долгую историю (см., например, [21, 55, 56, 80, 81, 114, 153, 168]), интерес к ней значительно возрос в последнее время в связи с экспериментальными и теоретическими исследованиями быстрых релаксационных процессов в полупроводниках [83, 149] и столкновений тяжелых ядер [56, 75, 105, 106]. Кинетическое уравнение с учетом начальных корреляций в низшем порядке теории возмущений было выведено в работах [110, 114] из цепочки уравнений для приведенных матриц плотности. Более общее квантовое кинетическое уравнение с начальными корреляциями было выведено методом функций Грина в работе [133], которой мы и будем, в основном, следовать.  [c.62]

Переходя к кинетической теории плотных квантовых систем с сильным взаимодействием между частицами, мы должны иметь в виду, что динамику многочастичных корреляций и эволюцию одночастичной матрицы плотности теперь приходится описывать, по существу, на одной и той же шкале времени ). Если в начальном состоянии отсутствуют корреляции между частицами, то для восстановления всех долгоживущих корреляций требуется значительное время. Иначе говоря, квантовая кинетическая теория, основанная на граничном условии, которое вводится с помощью квазиравно-весного статистического оператора (4.1.32), будет существенно немарковскощ т. е. в кинетическом уравнении для одночастичной матрицы плотности важную роль будут играть эффекты памяти. Решать немарковские кинетические уравнения очень сложно. В большинстве задач эффекты памяти удается учесть только в первом приближении, т. е., фактически, для слабо неидеальных систем ). Поэтому кажется разумным попытаться сохранить марковский вид уравнений эволюции, расширив набор базисных динамических переменных. В контексте классической кинетической теории эта идея уже обсуждалась в разделе 3.3.4. Теперь мы хотим распространить ее на квантовые системы.  [c.288]


Смотреть страницы где упоминается термин Матрица плотности эволюция во времени : [c.271]   
Квантовая оптика в фазовом пространстве (2005) -- [ c.83 ]



ПОИСК



Матрица плотности

Эволюция



© 2025 Mash-xxl.info Реклама на сайте