Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в в тонкостенных стержнях 229 --- в тонкостенных стержнях с замкнутым профилем

Вычислим теперь максимальные касательные напряжения в поперечном сечении тонкостенной трубы, рассматривая ее как тонкостенный стержень замкнутого профиля.  [c.114]

Представим тонкостенный стержень открытого профиля в виде набора вложенных друг в друга тонкостенных стержней замкнутого профиля, как показано на рис. 13.28. При достаточно большом числе разбиений толщина каждого стержня мала и поток касательных напряжений в пределах каждого выделенного таким образом пояса постоянен, но зависит от координаты t] пояса  [c.312]


Формула для перемещения щ в тонкостенном стержне замкнутого профиля при чистом кручении. Рассмотрим тонкостенный стержень замкнутого поперечного сечения, фрагмент последнего показан на рис. 11.35, а. На этом рисунке изображены и две системы осей М т) — подвижная и Ол (/ —неподвижная. В подвижной системе ось направлена по касательной к контуру в текущей его точке М, а т) —по нормали к контуру. Обе системы левые. Исходя из аналогии Прандтля и допуская некоторую весьма несущественную погрешность, будем считать, что полные касательные напряжения по толщине б распределены равномерно и параллельны — касательной к контуру, т. е. Тг = Тг, Тгг, = 0. Аналогично по толщине б будем считать распределенными равно.мерно и перемещения да.  [c.77]

Очевидно, например, что кручения не будет, если изгибать симметричный стержень, хотя бы двутавр или швеллер, силами, действующими в плоскости его симметрии. Весьма большая жесткость на кручение замкнутых тонкостенных профилей делает для них вопрос об условиях отсутствия кручения второстепенным. В тех же случаях, когда тонкостенный стержень открытого профиля изгибается в плоскости, даже являющейся главной плоскостью, но не плоскостью симметрии, необходимо принять особые меры для предотвращения кручения. В этом параграфе мы предполагаем, что в силу тех или иных обстоятельств кручение отсутствует, значит, никаких иных касательных напряжений, кроме как от изгиба, в стержне нет.  [c.275]

Тонкостенный стержень как расчетная схема сохраняет в себе основные свойства обыкновенного бруса, и выведенные ранее формулы, связанные с растяжением, изгибом и кручением бруса, остаются в основном справедливыми и для тонкостенных стержней. Так, в частности, в гл. 11 было рассмотрено кручение бруса с открытым и замкнутым тонким профилем. Полученные формулы прямо относятся к тонкостенным стержням и дают значения основных напряжений при кручении. Точно так же применима к тонкостенным стержням и выведенная ранее формула для определения нормальных напряжений при  [c.325]

Откуда следует, что отношение напряжений имеет величину порядка /)/5, а отношение углов закручивания - порядка D/Ъ) . Так как для тонкостенных стержней /) 5, следовательно, стержень с замкнутым профилем является существенно более прочным и жестким, нежели стержень с открытым профилем при идентичных исходных данных.  [c.67]

При исследовании кручения значения нормальных напряжений Ov = Ог могут оказаться весьма существенными. Кручение называется свободным, если роль нормальных напряжений в общей деформации бруса мала в сравнении с ролью касательных напряжений. В противном случае кручение называется стесненным. Стесненность кручения связана со стеснением депланацин поперечных сечений. Например, полый круглый стержень (тонкостенный стержень замкнутого профиля) испытывает свободное кручение без депланации поперечных сечений, как показано на рис. 13.3, а. Этот же стержень, будучи разрезанным вдоль одной из образующих открытый профиль), под действием тех же моментов закручивается с расхождением краев разреза в направлении оси, что приводит к депланации поперечных сечений. В этом случае значения малы и кручение остается свободным, при котором продольные (параллельные оси стержня) волокна не изменяют своей длины (рис. 13.3, б). Однако, если у того же разрезанного вдоль образующей стержня-трубки закреплен один на концов, а к другому приложен крутящий момент, характер напряженно-деформированного  [c.292]


В 1932 г. вышла в свет работа В. Н. Беляева — первая в мировой литературе работа, посвященная стесненному кручению тонкостенных стержней с замкнутым профилем. В этой работе рассматривается стержень замкнутого прямоугольного сечения,, со-. стоящий из мощных поясов, тонких стенок и нйсоторого числа диафрагм. Для упрощения решения задачи В. Н. Беляев предложил считать стенку воспринимающей только касательные напряжения И не работающей, йа нормальные напряжения. В этой же работе дан анализ статической неопределимости системы, указана наиболее целесообразная основная система и получена удобная система уравнений трех осевых сил для определения лишних неизвестных.  [c.6]


Смотреть страницы где упоминается термин Напряжения в в тонкостенных стержнях 229 --- в тонкостенных стержнях с замкнутым профилем : [c.204]    [c.325]   
Справочник машиностроителя Том 3 (1951) -- [ c.228 ]



ПОИСК



Напряжения в в тонкостенных стержнях

Профили замкнутые тонкостенные

Профили тонкостенных стержней

Профили тонкостенных стержней замкнутые

Профиль замкнутый

Профиль тонкостенный

Стержень тонкостенный

Стержни Профили

Стержни тонкостенные замкнутые

Ц замкнутый



© 2025 Mash-xxl.info Реклама на сайте