Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы графические проектирование

Если в техническом проектировании благодаря активному внедрению автоматизации проектирования и системному характеру творческого процесса наблюдается устойчивая тенденция смещения наиболее важных сторон профессиональной деятельности инженера в область, близкую к дизайну (по характеру задач и применяемому методу исследования), то следует ожидать и в системе графического отображения аналогичную ассимиляцию идей и методов. Тем более, что основной метод синтеза технической формы в дизайне — метод графического пространственного моделирования — близок к технике своей конструктивной ориентацией.  [c.12]


Графические средства обеспечения автоматизированного проектирования не отвечают характеру мышления сегодняшнего проектировщика. Поэтому необходимо тщательно проанализировать возможности, предоставляемые другими системами графического отображения информации, с точки зрения их использования в графической подготовке студентов инженерного вуза.  [c.13]

Лекционный курс, например, может содержать структуру и основные принципы построения АКД использование графических средств вычислительной техники на различных этапах проектирования методы автоматизированной обработки графической информации основные задачи автоматизации конструкторской деятельности, к которым относятся многовариантность конструирования, модернизация (частичное изменение) существующих конструкций выполнение документации, разработанной на базовых, унифицированных несущих конструкциях, состоящих из стандартных и типовых элементов выполнение трудоемких, рутинных графических работ интерактивные графические системы графические пакеты графические стандарты технические средства ввода и вывода графической информации.  [c.115]

Проектирование установок и их элементов можно в значительной степени возложить на ЭВМ. Наиболее полно этой задаче отвечает система автоматизированного проектирования (САПР). САПР может выдавать основные расчетные данные, проводить их анализ, принимать проектные решения с учетом различных ограничений, имеющегося оборудования и существующей технологии и даже выдавать текстовую и графическую проектно-конструкторскую документацию. Обязательным элементом САПР является комбинированная модель установки или процесса.  [c.132]

I. ПОДСИСТЕМА ОТОБРАЖЕНИЯ ГРАФИЧЕСКИХ ДАННЫХ В СИСТЕМЕ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ  [c.5]

В процессе функционирования системы автоматизированного проектирования накапливаются архивы графической информации многократного пользования, образующие информационные средства машинной графики.  [c.6]

Номенклатура устройств терминала определяется классом задач, решаемых в конкретной системе автоматизированного проектирования. Терминалы с полным комплектом графических устройств получат в ближайшие годы широкое распространение благодаря осуществлению социалистическими странами проекта Единой системы ЭВМ [20].  [c.6]

Из всех графических устройств наибольшее распространение получили в настоящее время чертежные автоматы — автономно функционирующие или соединенные электрическим каналом с ЭВМ. В меньшей степени используют графические дисплеи и устройства ввода. Это объясняется не только недостаточным выпуском технических средств и их высокой стоимостью, но и огромными трудностями, возникающими при разработке программного обеспечения. Поэтому эффективность применения графических устройств в системах автоматизированного проектирования опре-  [c.7]


Источниками и потребителями графической информации в системе автоматизированного проектирования являются проектировщики и вычислительные машины. В разработке проекта могут одновременно участвовать десятки специалистов, взаимодействующих с ЭВМ. Эффективное взаимодействие специалистов и технических средств становится возможным только на основе единой информационной базы системы автоматизированного проектирования. Аналогичное утверждение справедливо и по отношению к создаваемой в системе проектной и рабочей документации, которая должна соответствовать государственным стандартам и не отличаться от документации, создаваемой без применения вычислительной техники.  [c.31]

В системе автоматизированного проектирования должны создаваться и автоматически воспроизводиться текстовые и графические документы.  [c.32]

Совокупность дисплейных команд образует язык графического диалога проектировщика с системой автоматизированного проектирования. Язык не может иметь форму естественного разговорного или графического языка, так как пока не удается создать программы, распознающие тексты или чертежи произвольной сложности. Поэтому дисплейные команды строятся путем соедине-76  [c.76]

Проблемно-ориентированный язык можно практически использовать только при наличии программ — транслятора. Транслятор создают чаще всего на языке ассемблер. Трудоемкость его разработки составляет обычно 4—10 человеко-лет, и исполнителями являются высококвалифицированные системные программисты. Универсальные программные средства операционных систем ЭВМ хорошо приспособлены только к обработке алфавитно-цифровой информации. В системе автоматизированного проектирования для этой цели наиболее часто применяют языки ассемблер и ФОРТРАН. В перспективе предсказывают возможность применения языка ПЛ/1. Таким образом, ассемблер, ФОРТРАН и, возможно, ПЛ/1 в подсистеме графического отображения играют 126  [c.126]

Проблемно-ориентированные графические языки, используемые в системе автоматизированного проектирования, можно классифицировать по следующим признакам 1) оперативности  [c.127]

Вследствие разнообразия решаемых задач и больших объемов обрабатываемых графических данных целесообразно применять в системе автоматизированного проектирования несколько графических языков, построенных в форме диалектов некоторого базового языка подсистемы графического отображения.  [c.128]

Базовый проблемно-ориентированный язык описания графи ческой информации (ОГРА) ]27] предназначен для описания графических конструкторских документов и операций их формирования в системах автоматизированного проектирования. Изобразительные средства языка дают возможность автономно описывать графическую информацию или включать ее в программы проектирования, составленные на универсальных алгоритмических языках типа ассемблер и ФОРТРАН. Язык строится в соответствии с требованиями (см. п. 1 гл. 4), вытекающими из специфики автоматизированного проектирования.  [c.136]

Библиотека является частью программного обеспечения подсистемы отображения и предназначена для хранения программ построения типовых графических изображений (ТГИ) конструкторских документов. Она включается в банк графических конструкторских документов системы автоматизированного проектирования (рис. 83). Библиотеку создают пользователи в соответствии с номенклатурой используемых ими ТГИ.  [c.176]

Существуют различные способы составления ТГП. Выбор конкретного способа зависит от типа описываемого типового графического изображения и наличия в системе автоматизированного проектирования трансляторов диалектов базового графического языка.  [c.177]

Описанная система графического взаимодействия с ЭВМ применяется для оптимального проектирования различных узлов авиакосмических аппаратов, обеспечивая высокое качество проектных решений, значительное сокращение сроков и материальных затрат. Различные примеры применения графического взаимодействия в системах проектирования приведены в литературе [44].  [c.219]

На ПП традиционно выводят графические изображения, полу чаемые в системах автоматизированного проектирования. Чертеж, полученный, например, в Автокаде в основном состоит из линий, что соответствует принципу создания изображения векторным плоттером.  [c.211]

Двухкоординатный графопостроитель, или плоттер, — это устройство ввода графической и текстовой информаций на бумажные носители. Графопостроители широко используются для вычерчивания машиностроительных и строительных чертежей, метеорологических карт, функциональных и принципиальных электрических схем, для вывода результатов вычислений в виде графиков, кривых и т. п. Благодаря высокой точности и большой информационной емкости получаемых чертежей графопостроители являются необходимым и ключевым элементом любой системы машинного проектирования.  [c.467]


В настоящее время в различных областях науки и техники разрабатываются и успешно используются системы автоматизированного проектирования (САПР), основу которых составляют установки, включающие ЭВМ, оборудованные периферийными устройствами, обеспечивающими ввод информации в ЭВМ и вывод из ЭВМ данных, полученных в результате машинной обработки этой информации при этом в зависимости от требований результат решения может быть представлен в дискретной (цифровой) или непрерывной (графической) форме.  [c.294]

В полуавтоматических системах автоматизированного проектирования применяется ручной ввод графической информации. С этой целью изделие или деталь, подлежащая конструированию, рассматривается как геометрическая фигура, которая расчленяется на элементы — сочетания различных видов линий и участков поверхностей с указанием их взаи.много расположения и ориентации по отношению к выбранной системе координат.  [c.298]

Уже теперь разрабатывают системы автоматизированного проектирования (САПР). Под этим понятием подразумевается применение ЭВМ для автоматизации проектирования как отдельных элементов и деталей, так и конструкций, подсистем и систем. Процесс проектирования с использованием ЭВМ может быть и не связан с изготовлением чертежей и применением графических устройств. В общем, результатом такого проектирования могут быть и чертежи, и текстовая документация (расчетно-пояснительные записки, отчеты и пр.), и технологическая документация (технологические или операционные карты и т. д.), а также как 1е-либо программоносители с записью программы для машин с ЧПУ. Таким образом, основой автоматизированного проектирования является система расчетов, позволяющая наиболее целесообразно выбрать конструктивные или иные производственные решения.  [c.557]

В системах автоматизированного проектирования применяют дисплеи, которые позволяют осуществлять диалог человека с машиной и представляют широкие возможности по работе с текстами и графическими изображениями.  [c.313]

В нашей стране разработаны и эксплуатируются системы автоматизированного проектирования микросхем с помощью ЭВМ, с применением устройств отображения информации на электронно-лучевых индикаторах (ЭЛИ), Такие системы позволяют производить расчеты, разрабатывать топологию и получать необходимые технологические и конструкторские документы непосредственно от ЭВМ. В этом случае конструктор с помощью светового пера и клавиатуры производит разработку топологии микро-схем, вызывая необходимые ему графические изображения элементов и размещая их на экране ЭЛИ. Он может перемещать, переворачивать и масштабировать на экране изображение отдельных элементов. После получения удовлетворительного варианта он выполняет разводку межсоединений. ЭВМ помогает ему быстро производить необходимые расчеты и выдает перфоленту для автоматического изготовления комплекта фотошаблонов и документации.  [c.31]

Системы автоматизированного проектирования структурно представляют собой совокупность средств автоматизации проектирования и коллектива специалистов. Средствами обеспечения автоматизированного проектирования являются технические средства (ЭВМ с необходимым комплексом устройств машинной графики и графического взаимодействия) программные комплексы, состоящие из общесистемной и прикладной частей совокупность данных (необходимых в процессе проектирования), составляющих информационное обеспечение САПР алгоритмы проектирования, методы решения оптимизационных задач, исследования напряженного состояния и др., составляющие математическое обеспечение САПР языки проектирования, термины, составляющие лингвистическое обеспечение САПР совокупность документов методического плана документы организационно-распорядительного характера и др., составляющие организационное обеспечение САПР.  [c.9]

Для успепшого функционирования САГИ должна обладать достаточно развитыми информационными средствами машинной графики см. рис. 361), включающими в себя архивы или библиотеки графической информации многократного использования и банки графических данных, oдepжaп иe сведения о всех типовых изображениях, используемых в системе автоматизированноо проектирования. Банк данных должен обеспечивать включение, хранение и выдачу информационных материалов, содержащих разнообразные сведения о проектируемых объектах и предназначенных для использования на последующих этапах проектирования данного или новых изделий. Банк данных включает в себя собственно информационные массивы, совокупность которых принято называть  [c.328]

Примером системы второй группы может служить графическая подсистема специализированной САПР печатных плат на базе системы Кулон (система машинного проектирования 15УТ-4-017). Обладая рядом положительных качеств (простота в эксплуатации и надежность), такое программное обеспечение трудно модифицировать и оно не мобильно. В связи с этим распространено программное обеспечение средств машинной графики, работающее под управлением операционных систем общего назначения.  [c.18]

Кроме того, в рамках ISO проектируется стандартизация геометрического интерфейса между системами автоматизированного проектирования и производства IGES, который стандартизирует формат файла данных для обмена проектно-конструкторской информацией интерфейса с виртуальным устройством VDI, т. е. между аппаратно-независимой и аппаратно-зависимой частями графической системы минимального интерфейса пользователя с графическими системами PMIG. Это относительно небольшой набор простых и четко сформулированных функций, которые легко реализуются и порождают компактную эффективную программу, и в то же время обладают возможностями, достаточными для обеспечения вывода двухмерной графической информации внутреннего построения метафайла VDM, т. е. метафайла виртуального устройства.  [c.27]


В книге изложены основы теории алгоритмизации процессов отображения графической информации в системах автоматизированного проектирования описаны методы построения математических моделей изделий, конструкторских документов ЕСКД и ЕСТД, а также процессов автоматического отображения изделий в графические конструкторские документы рассмотрены особенности алгоритмизации и программирования задач отображения графической информации, основанные на системном анализе объектов и процессов.  [c.2]

В данной книге основное внимание уделяется математическим моделям изделий, конструкторских документов ЕСКД и ЕСТД, а также процессам автоматического отображения изделий в графические модели, т. е. в конструкторские документы. Рассматриваются методы моделирования, алгоритмизации и программирования задач отображения графической информации, основанные на системно-структурном анализе изделий, документов и процессов. Приводятся краткие описания и характеристики технических средств машинной графики, наиболее перспективных для применения в системах автоматизированного проектирования.  [c.4]

Основными элементами системы автоматизированного проектирования являются колллектив проектировщиков, а также технический, программный и информационный комплексы. Связь проектировщиков с ЭВМ, программами и информацией осуществляется через технические средства ввода, вывода, накопления и передачи алфавитно-цифровой и графической информации.  [c.5]

В системах автоматизированного проектирования, создаваемых в США и других странах, широкое применение находят устройства графического отображения Калкомп ( al omp, США), в частности система Калкомп-900 . В состав системы входят устройства управления и ввода программы вычерчивания с магнитной ленты, а также чертежный автомат планшетного или рулонного типов. Важными особенностями системы Калкоми-900 являются возможность записи на магнитную ленту команд для автономной работы чертежного автомата . использование в ка честве устройства управления (УУ) универсальной мини-ЭВМ это позволяет использовать УУ для интерполяции линий и гене рации знаков, в том числе алфавитно-цифровых, специальных типовых, а также для выполнения других графических функций возможность расширения функций УУ путем ввода программ  [c.15]

Схема стабилизации изображения на ЭЛТ является значительно более сложной и дорогой, чем схема на ЗЭЛТ, поэтому в системах автоматизированного проектирования электронные чертежные автоматы с регенерацией целесообразно использовать для активной графической связи оператора-проектировщика с ЭВМ.  [c.22]

Основные характеристики серийных зарубежных дисплеев приведены в работе [58]. Наибольшее применение в системах автоматизированного проектирования за рубежом получили графические дисплеи Синтра (Франция), Компьютек-400, IBM2250 (США) и ряд других, имеющих сходные с ЕС 7064 характеристики.  [c.29]

Автоматические и человеко-машинные системы проектирования имеют ряд одинаковых компонентов банки данных, технические и программные средства. В то же время автоматизированные системы включают присущие только им компоненты разветвленную систему банков текстовых и графических данных индивидуального и коллективного пользования средства, обеспечивающие текстовой и графический диалог проектировщиков с ЭВМ. Все задания поступают в систему автоматизированного проектирования из внешней среды. Результаты тоже возвращаются во внешнюю среду. Поэтому возникает необходимость обеспечения информационной совместимости системы и внешней среды, а также взаимодействующих между собой элементов системы—проектировщиков, технических, программных и информационных средств. Этой цели, как было показано, служат ЕСКД и ЕСТД, принятые в качестве единой информационной базы системы автоматизированного проектирования.  [c.40]

Графическое взаимодействие является эффективным методом автоматизированного проектирования только при использовании многопрограммных ЭВМ с разделением времени. Современные мощные ЭВМ третьего поколения способны обеспечить оперативное графическое взаимодействие с десятками одновременно работающих проектировщиков. В экспериментальных целях иногда применяют менее совершенную технику, так как большинство эксплуатируемых в настоящее время ЭВМ не имеют режима разделения времени. Необходимыми условиями оперативности системы графического взаимодействия являются также высокое быстродействие и большой объем оперативной памяти. Оперативность определяется временем выполнения дисплейной команды — от ввода до отображения полученных результатов. Время должно составлять в обычных случаях несколько секунд, а при решении сложных задач — десятки секунд. Получив сигнал с пульта дисплея о начале ввода информации, управляющая программа ПОГВ через операционную систему ЭВМ осуществляет прерывание и временную приостановку счета текущей программы, устанавливает требуемую последовательность программ ПОГВ и затем управляет полным циклом выполнения дисплейной команды — от задания информации оператором до отображения результатов на экране.  [c.81]

Операции построения изображений используются не только для автоматического вычерчивания чертежа, но и для графического общения оператора с ЭВМ через дисплей в многопультовых человеко-машинных системах автоматизированного проектирования. Центральная ЭВМ или комплекс машин системы должны одновременно обслуживать десятки или даже сотни пультов операторов-конструкторов. Время, в течение которого каждый оператор ожидает результата требуемой операции, не должно превышать нескольких секунд, иначе эффективность работы оператора будет недостаточной. Это условие вызывает повышенные требования к быстродействию машин, а также к методам и алгоритмам построения изображений. Поэтому актуальной является разработка методов, дающих возможность создать алгоритмы формирования изображений с большим числом параллельных вычислений, так как именно расчленение и параллельное выполнение ветвей вычислительного процесса обеспечивают наибольший рост быстродействия при одновременном уменьшении объема программ.  [c.120]

Примером дисплейного терминала, применяемого в отечественных системах ManjHHHoro проектирования, является устройство преобразования графической информации (УПГИ). Это устройство включает графический дисплей, дисплейный процессор, устройства ввода информации, блок связи с процессором сателлита и блок сопряжения с центральным процессором.  [c.16]

ЛИЯ и его составляющих (70% от общей трудоемкости), организация архивов и их ведение (15%), собственно проектирование (15%). Проектирование, в свою очередь, подразделяется на копирование архивных прототипов (70 %), модификацию вариантов (20%), исправление ошибок (9 %) и разработку (1 %). Несмотря на значительное количество рутинных операций, составляющих весь процесс проектирования, его формализация достаточно сложна и относительно трудоемка, и только с появлением на рынке достаточно дешевой микрепроцессорной техники этот процесс стал объективной реальностью, что и привело в начале 60-х годов к широкому распространению САПР. Аббревиатура — Системы Автоматизированного проектирования — впервые была использована основоположником этого naj Horo направления Айвеном Сазерлендом (Массачусетский технологический институт). САПР охватывают весь спектр проблем, связанных с проектной деятельностью (графических, аналитических, экономических, эргономических, эстетических...). Очевидно, что в условиях жесткой конкуренции коллектив любого предприятия заинтересован в сокращении сроков от идеи до запуска в производство новых изделий, в оптимизации производственных процессов, в потребительских качествах выпускаемых изделий (надежности, безопасности, эстетичности) и, наконец, в их реализации. Первый этап от идеи до запуска в производство — самый трудоемкий, так как здесь, кроме воплощения идеи в доступную для всех форму информации, необходимо предусмотреть и технологичность, и надежность, и безопасность. Только использование САПР позволяет в значительной мере сократить продолжительность этого этапа, потому что к возможностям САПР относятся  [c.8]


При автоматизированном выпуске конструкторской документации необходимо выполнять основные требования при выборе форм и форматов выходных документов необходимо учитывать стандарты ЕСКД система автоматизированного проектирования должна выдавать весь комплект конструкторских и технологических документов, обеспечивающих изготовление изделий и дополнительно конструкторских документов для этапов контроля изготовленного изделия машинные формы конструкторской документации Д0ЛЖ1НЫ обеспечивать не только автоматизированные, но и неавтоматизированные методы обращения документации основные графические документы целесообразно выполнять базовым способом.  [c.119]

АБД — автоматизированный банк данных АИПС — автоматизированная информационно-поисковая система АРМ — автоматизированное рабочее место АСУ — автоматизированная система управления АСУТП — автоматизированная система управления технологическим процессом АЦК — алфавитно-цифровая клавиатура БД — база данных БЗУ — буферное запоминающее устройство ГРУ — графическое регистрирующее устройство ИПС — информациоинодпо-исковая система ИПЯ — информационно-поисковый язык КСС — критерий смыслового соответствия ОС — операционная система ПОД — поисковый образ документа ПП — поисковое предписание ППП — пакет прикладных программ САПР — система автоматизированного проектирования СУБД. — система управления базой данных ТПП — техническая подготовка производства УО — устройство отображения УП — устройство печати ЭЛТ — электронно-лучевая трубка ЯМД — язык манипулирования данными ЯОД — язык описания данных.  [c.10]


Смотреть страницы где упоминается термин Системы графические проектирование : [c.26]    [c.486]    [c.31]    [c.35]    [c.156]    [c.34]   
Основы интерактивной машинной графики (1976) -- [ c.386 ]



ПОИСК



Графическая система

Графический

О проектировании систем КПТ

Подсистема отображения графических данных в системе автоматизированного проектирования

Проектирование графической системы индивидуального пользования

Требования к представлению графической информации в системе автоматизированного проектирования в соответствии с ЕСКД и ЕСТД



© 2025 Mash-xxl.info Реклама на сайте