Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение тела сферическое переносное

Как известно, движение звена механизма можно разложить на переносное поступательное с полюсом в произвольной точке О и вращательное (сферическое) около этой точки. Поэтому, если через (, и Со обозначить скорость и ускорение полюса О, то скорость и ускорение какой-либо точки Л1 тела мы можем представить в виде сумм  [c.183]

Таким образом, кинетическая энергия твердого тела в общем случае его движения равна сумме кинетической энергии тела в его переносном поступательном движении вместе с центром масс и его кинетической энергии в сферическом движении относительно центра масс.  [c.181]


В самом общем случае движение твердого тела мы представим как составное, разложив его на переносное поступательное вместе с какой-либо точкой , принятой нами за полюс, н относительное сферическое вокруг полюса.  [c.244]

Доказанная теорема справедлива и для конечных и для бесконечно малых перемещений. Отсюда вытекает сделанный ранее вывод о разложении движения свободного твердого тела в общем случае на переносное поступательное движение вместе с полюсом О и относительное сферическое движение вокруг мгновенной оси вращения ОР, проходящей через этот полюс.  [c.396]

Тело, участвующее в двух вращениях вокруг пересекающихся осей, имеет неподвижную точку, расположенную на пересечении осей. Оно вращается вокруг неподвижной точки, т. е. соверщает сферическое движение. Таким образом, сферическое движение твердого тела можно считать состоящим из двух вращений вокруг пересекающихся осей переносного и относительного.  [c.207]

Общий случай движения твердого тела. Движение свободного твердого тела в общем случае mojkfio разложить на два составляющих движения на переносное поступательное движение вместе с центром масс и относительное сферическое движение относительно центра масс (рис. 156). Тогда кинетическая энергия тела определится по формуле Кенига  [c.181]


Смотреть страницы где упоминается термин Движение тела сферическое переносное : [c.304]    [c.190]    [c.458]   
Теоретическая механика (1980) -- [ c.208 ]



ПОИСК



Движение переносное

Движение сферическое

Движение тела переносное

Движение тела сферическое



© 2025 Mash-xxl.info Реклама на сайте