Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение невозмущенное периодическое стационарное

А. М. Ляпуновым были подробно рассмотрены случаи стационарного и периодического невозмущенного движений. Хотя стационарное движение можно рассматривать как частный  [c.331]

Указанные выще два способа исследования проблемы устойчивости движения А. М. Ляпунов применил к исследованию общего случая невозмущенного движения. Но особое внимание А. М. Ляпунов обратил на случаи-стационарного и периодического невозмущенных движений, выделив задачи, в которых уравнения первого приближения не могут дать ответ на вопрос об устойчивости движения. Для решения этих задач А. М. Ляпунов применил весьма тонкие и сложные соображения.  [c.332]


Обратимся к изучению явлений, возникающих при дальнейшем увеличении числа Рейнольдса, после достижения им критического значения и установления рассматривавшегося в 26 периодического течения. По мере увеличения R наступает в конце концов момент, когда становится неустойчивым и это периодическое движение. Исследование этой неустойчивости должно, в принципе, производиться аналогично изложенному в 26 способу определения неустойчивости исходного стационарного движения. Роль невозмущенного движения играет теперь периодическое движение vo(r, ) (с частотой oi), а в уравнения движения подставляется v = Vo + V2, где V2 —малая поправка. Для 2 получается снова линейное уравнение, но его коэффициенты являются теперь функциями не только координат, но и времени, причем по времени эти коэффициенты представляют собой периодические функции с периодом Т = 2n/ oi. Решение такого уравнения должно разыскиваться в виде  [c.156]

Задачи об устойчивости состояний равновесия занимают одно из центральных мест в теории устойчивости механических систем. К этому классу принадлежит большинство задач об устойчивости элементов конструкций и машин, загруженных квазистатическими силами. Кроме того, многие задачи устойчивости движения также приводятся к задачам об устойчивости состояний равновесии. Так, стационарное движение системы при силах, не зависящих от времени, может быть представлено в виде некоторого относительного равновесия. В других случаях нестационарностью невозмущенного движения допустимо пренебречь. Например, рассматривая устойчивость прямолинейной формы упругих стержней, нагруженных продольньпаи силами -периодическими функциями времени, обычно пренебрегают продольными колебаниями от действия этих сил [3]. Задача об устойчивости движения в результате сводится к родственной задаче об устойчивости равновесия.  [c.473]


Курс теоретической механики. Т.2 (1977) -- [ c.331 ]



ПОИСК



Движение невозмущенное

Движение невозмущенное периодическое

Движение периодическое

Движение стационарное



© 2025 Mash-xxl.info Реклама на сайте