Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна улучшение смачиваемости металлом

Разработан метод получения пропиткой композиционного материала на основе алюминия, упрочненного волокном из карбида кремния [113]. Особенностью изготовления этого материала является весьма высокая температура расплава, достигающая 1050° С, необходимая для обеспечения хорошей смачиваемости волокна расплавленным металлом. В результате контактного взаимодействия волокна с [расплавленным металлом при этой температуре его прочность снижается более чем на 30% (с 350 до 220 кгс/мм ). Для снижения температуры пропитки и улучшения смачиваемости было предложено наносить на волокна карбида кремния покрытия из никеля, меди или вольфрама. Применение покрытия позволяет снизить температуру пропитки до 700° С и сократить до нескольких минут время пропитки. Изготовленный по такой технологии материал с матрицей из алюминия (предел прочности 3 кгс/мм , относительное удлинение 40%), упрочненный 15 об. % волокна с покрытием, имел предел прочности 24 кгс/мм и относительное удлинение 0,6%.  [c.97]


Химическое меднение. Химическое меднение является одним из немногих способов получения композиционных материалов на основе меди и его сплавов, армированных углеродным волокном. Введение углеродных волокон в медные сплавы целесообразно в некоторых случаях, когда требуется материал с высокими элек-тро- и теплопроводностью, близкими к соответствующим характеристикам меди, но более прочный, с более низким температурным коэффициентом линейного расширения. Кроме того, он может служить и хорошим материалом для высокопрочных, самосмазываю-щихся ПОДЦ1ИИНИКОВ трения. Часто химическое меднение исполь-зуют для улучшения смачиваемости углеродных волокон или нитевидных кристаллов в процессе изготовления композиционных материалов на основе алюминиевых сплавов методом пропитки жидким расплавом, либо в качестве подслоя на этих унрочните-лях, образующего плавящуюся эвтектику в контакте с металлом матрицы, используемым в виде тонких фольг при горячем прессовании.  [c.186]

Для улучшения смачиваемости углеродных волокон расплавленным алюминием разработан способ последовательной обработки поверхности волокон расплавами Na, Sn - 2%Mg и алюминиевых сплавов [18]. При армировании углеродными волокнами сплавов на основе Д1 и Mg наряду с улучшением смачиваемости волокон необходимо предотвращать снижение их прочности, которое может происходить при контакте с раплав-ленньш металлом. Для решения этой задачи требуются дальнейшие исследования, которые могли бы дать практические рекомендации по сохранению прочности углеродных волокон при контакте с расплавами металлов.  [c.38]

На рис. 7.1 показана схема технологического процесса производства металлов, армированных волокнами. Наиболее важные зтапы процесса выделены прямоугольниками. По мере надобности для улучшения смачиваемости волокон металлом и адгезии с ним, а также для регулирования реакционной способности поверхности волокон на них наносят покрытие или осуществляют другую предварительную обработку волокон. Затем формируют полуфабрикаты или так называемые исходные элементы металлокомпозитов. Полученные полуфабрикаты разрезают в соответствии с требуемыми размером и формой, складывают, ориентируя их в нужном для данной конструкции направлении, и затем осуществляют формование. После этого проводят окончательную обработку изделия — склеивание отдельных частей, механическую обработку и т. д.  [c.241]

I - металлическая матрица 2 - волокно 3 - предварительная обработка волокон 4 - формование полуфабрикатов 5 - получение слоистого материала из полуфабрикатов 6 - формование (получение композиционного материала и придание формы) 7 - вторичная обработка 8 - применение 9 - элементарные волокна 10 - жгуты, нити 11 - ткани 12 - короткие волокна (монокристал-лические усы" и т. д.) 13 - улучшение смачиваемости волокон металлом и адгезии с ним, регулирование реакционной способности поверхности волокон 14 -химическое и физическое осаждение в газовой фазе 15 - металлизация и т. д. 16 — сырые полуфабрикаты в виде листов или лент 17 — металлизованные в расплаве листы или ленты 18 - пропитанная расплавом лента 19 - листы, полученные методом физического осаждения в газовой фазе 20 — придание материалу заданных анизотропных свойств 21 — горячее прессование 22 — горячее вальцевание 23 - горячая вытяжка 24 — HIP 25 — литье с дополнительной пропиткой расплавом 26 — парафинирование и т. д. 27 — механическая обработка 28 - механическое соединение 29 — диффузионная сварка 30 - парафинирование 31 — электросварка 32 — склеивание и т. д.  [c.242]


Получение направленных волокнистых композиций методами пропитки жидкими металлами осуществлялось главным образом по следующей схеме волокна или усы помещали в алундовые или кварцевые трубки и опускали в тигель с расплавленным металлом, который под действием капиллярных сил поднимался вверх по волокнам, либо металл матрицы помещался на верхнем конце трубки и при расплавлении стекал вниз по волокнам [38, 39]. Для улучшения качества композиции в некоторых случаях пропитка производилась под давлением инертного газа. Для улучшения смачиваемости в композициях Ag— AI2O3 [28] усы АЬОз покрывались никелем или платиной. Большим недостатком описанной выше технологии является ее трудоемкость — набивка трубок волокнами осуществлялась вручную.  [c.177]

III. Применение в композиционных материалах металлических матриц, легированных элементами с большим сродством к армирующему наполнителю, чем металл матрицы, или поверхностно-активными добавками. Происходящее при этом изменение химического состава границ раздела должно препятствовать развитию межфазного взаимодействия [6] Легирование матричных сплавов поверхностно-активными или карбидообразующимн добавками, так же как и нанесение технологических покрытий иа волокна, может способствовать улучшению смачиваемости металлическими расплавами армирующего наполнителя.  [c.493]

Первоначально при выборе матрицы и волокна для всех систем предполагали использовать те же основные принципы, что и для модельных систем. Джех и др. [22] показали справедливость правила смеси для композитов как с непрерывными, так и с короткими волокнами, избрав для этого систему медь — волокно. Медь и вольфрам, по существу, взаимно не растворимы и не взаимодействуют химически соответственно они не образуют соединений. Таким же образом Саттон и др. [38] на модельной системе серебро — усы сапфира убедительно продемонстрировали эффект упрочнения нитевидными кристаллами. Степень взаимодействия между серебром и усами сапфира даже меньше, чем между медью и вольфрамом, поскольку расплавленное серебро не смачивает сапфир. Для улучшения связи с расплавленным серебром те же авторы напыляли на поверхность сапфира никель. Однако связь между никелем и сапфиром была, вероятно, чисто механической, а на поверхности раздела никель — сапфир твердый раствор не образовывался. Поэтому не удивительно, что Хиббард [21] в обзоре, представленном в качестве вводного доклада на конференции 1964 г. Американского общества металлов, посвященной волокнистым композитным материалам, счел необходимым заключить Для взаимной смачиваемости матрицы и волокна необходимо, чтобы их взаимная растворимость и реакционная способность были малы или вообще отсутствовали . Это условие, как правило, реализуется для определенного типа композитных материалов, а именно, ориентированных эвтектик. Во многих эвтекти-ках предел растворимости несколько изменяется с температурой, что, вообще говоря, является причиной нестабильности, хотя в известной степени и компенсируется особым кристаллографическим соотношением фаз. Однако в большинстве практически важных случаев это условие не выполняется. После конференции 1964 г. основные успехи были достигнуты в области управления состоянием поверхности раздела между упрочнителем и матрицей. Ни серебро, ни медь не являются перспективными конструкционными материалами. Что же касается реакций между практически важными матрицами и соответствующими упрочнителями, то они очень сложны и могут приводить к самым разнообразным типам поверхностей раздела.  [c.13]


Углеродные волокна (1987) -- [ c.243 , c.244 ]



ПОИСК



Волокна

Волокна смачиваемость металлам

Смачиваемость

Улучшение



© 2025 Mash-xxl.info Реклама на сайте