Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технология процесса борирования

Химико-термическая и термическая упрочняющая поверхностная обработка позволяет резко изменить качество поверхности деталей машин и обеспечить требуемые эксплуатационные свойства (износостойкость, усталостная прочность, жаростойкость и др.), поэтому ее применение оказывается не только эффективным, но в ряде случаев единственно возможным средством для повышения надежности работы деталей. Расширение области термической и химико-термической упрочняющей поверхностной обработки стало возможным после того, как была усовершенствована технология процессов поверхностной закалки, цементации, азотирования, цианирования, а также в результате разработки новых процессов диффузионного насыщения поверхности сплавов (алитирование, диффузионное хромирование, борирование, сульфоцианирование и др.).  [c.283]


Наряду с изложением технологии процесса и свойств борированных слоев даны рекомендации по выбору рационального режима борирования, материала и термической обработке упрочняемых деталей.  [c.2]

Многие процессы технологии упрочнения поверхности металлов — цементация, азотирование, хромирование, борирование, цианирование и др. — являются диффузионными процессами. Закономерности некоторых из этих процессов могут быть исследованы, если проследить за диффузией вещества, содержащего соответствующий радиоактивный изотоп.  [c.5]

Порошковые смеси с участием аморфного бора, ферробора, карбида бора, ферроборала, активаторов и инертных наполнителей, ранее использовавшиеся для диффузионного борирования сталей, не обеспечивали необходимую скорость насыщения, были нетехнологичны из-за спекания или сравнительно быстрой истощаемости, часто не давали стабильных, воспроизводимых результатов. Проведенные исследования по механизму доставки бора к насыщаемой поверхности [211] позволили разработать технологию борирования сталей (и тугоплавких металлов) при использовании в качестве основы насыщающих смесей стандартного порошка карбида бора [211, с. 104 230]. Различные технологические варианты разработанного процесса борирования все шире начинают использовать в производстве.  [c.207]

Сущность одного из основных вариантов технологии состоит в следующем. В качестве борирующей засыпки применяют порошок технического карбида бора различной дисперсности или смеси на его основе Процесс борирования по данной технологии аналогичен процессу цементации в твердом карбидизаторе и отличается от него по существу только тем, что контейнер, в котором борируют изделия, герметизируют с помощью плавкого затвора. Для образования плавкого затвора используют крошку стекла с температурой размягчения 500—700 С. Борирование проводят в металлических сварных контейнерах (пакетах) из жаростойкой стали размеры и форма контейнеров определяются конфигурацией и габаритами обрабатываемых изделий и рабочим пространством печи. Герметизированный контейнер (рис. 76) с упакованными в нем изделиями, плотно засыпанными порошком карбида бора, помещают в горячую печь с воздушной или любой другой средой и выдерживают при 850—1050" С в течение времени, необходимого для получения боридного покрытия требуемой толщины. После этого контейнер извлекают из печи и охлаждают на воздухе, в проточной воде или в спрейере и распаковывают. Борированные изделия  [c.207]

При проведении процесса борирования штампового инструмента (технология освоена в ряде отраслей машиностроения) наилучшие результаты получены при использовании пасты следующего состава, % (по массе) 70 карбида бора (В4С), 26 криолита (NajAlFe), 4 фтористого натрия (NaF). Оптимальная толщина слоя нанесенной пасты 3 мм, рабочая температура 860 °С, продолжительность насыщения  [c.372]


Формирование структуры диффузионных слоев при химикотермической обработке стали и сплавов (и. о. проф. А. В. Белоцкий, доц. И. X. Труш, доц. Ю. Е. Яковчук). За пятилетие изучены процессы азотирования, борирования и цементации широкого класса углеродистых и легированных сталей. Получены новые теоретические данные и практические режимы, существенно расширяющие современные представления в теории и технологии термической обработки стали.  [c.69]

Химико-термическая обработка позволяет придать поверхности деталей машин такие специальные свойства, как высокое сопротивление износу, высокую жаростойкость, высокую коррозионную стойкость и т. п. Поэтому применение ее оказывается не только эффективным, но в ряде случаев единственно возможным средством для решения технической проблемы. Расширение области химико-термической обработки стало возможным после усовершенствования ее технологии, т. е. процессов цементации, азотирования, цианирования, а также в результате разработки новых процессов диффузионного насыщения поверхности сплавов алли-тирования, диффузионного хромирования, борирования, силицирования, сульфационирования, насыщения несколькими элементами и т. д.  [c.246]

Недостатками всех приведенных выше методов, кроме цементации и закалки Т.В.Ч. являются небольшая толщина упрочненного слоя и плохая его связь со структурой базового металла. При форсированных режимах эксплуатации упрочнённый слой быстро срывается с поверхности детали. В частности, борирование пытались применять для упрочнения пластин нресформ и шарошек буровых долот, но безуспешно, т.к. слой в процессе работы растрескивался и отслаивался [17]. Некоторые из приведенных выше методов упрочнения не технологичны, производственный цикл имеет достаточно длительный период, культура производства приведенных технологий требует модернизацию, механизация труда рабочих ограничена.  [c.28]


Смотреть страницы где упоминается термин Технология процесса борирования : [c.252]    [c.211]   
Смотреть главы в:

Упрочнение деталей борированием  -> Технология процесса борирования



ПОИСК



Борирование

Технология процесса



© 2025 Mash-xxl.info Реклама на сайте