Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы сохранения квантовых чисел

Нестрогие законы сохранения квантовых чисел элементарных частиц имеют место в одних типах взаимодействий и нарушаются в других. К таким квантовым числам относят изотопический спин, гиперзаряд, пространственную и зарядовую четности, С-четность и ряд других.  [c.971]

Законы сохранения квантовых чисел  [c.145]

Займемся теперь преобразованием 5-матрицы, заданной через один набор квантовых чисел в 5-матрицу, заданную через другой набор. Такие преобразования нам будут чрезвычайно полезны в дальнейшем. Приведем пример. Законы сохранения накладывают ряд ограничений на вид 5-матрицы. Если в наборы квантовых чисел а и входят квантовые числа интегралов движения, то по ним 5-матрица диагональна. Если нас будут интересовать ограничения, накладываемые законами сохранения, например, на угловые распределения, то мы должны перевести 5-матрицу из представления, заданного квантовыми числами интегралов движения, в представление, задаваемое углами.  [c.124]


Строгие законы сохранения квантовых чисел элементарных частиц имеют место во всех видах взаимодействия. К таким законам, нарушение которых пока не обнаружено, относятся сохранение электрического заряда — суммарный электрический заряд частиц в начале процесса взаимодействия и суммарный электрический заряд частиц, образующихся в результате взаимодействия, совпадают (электрический заряд элементарной частицы по абсолютному значению кратен заряду электрона е) сохранение барионного заряда — во всех процессах взаимодействия изменение числа барионов должно сопровождаться точно таким же изменением числа аити-барионов. Барионам приписывается барионный заряд В=1, антибарионам В=—1. Барионный заряд остальных частиц В = 0 электронный, мюонный и т-лептонный заряды приписываются соответственно электрону и электронному нейтрино v (/s=l), мюону и мюонному нейтрино Vii fIiL = l), т-лептону и т-нейтрино vi (/- = 1). Антилептонам приписываются противоположные по знаку лептонные заряды. Для остальных известных частиц = =/х =.0. Экспериментальные данные свидетельствуют о сохранении лептонных зарядов всех трех разновидностей в отдельности. Имеются теоретические основания полагать, что законы сохранения барионного и лептонных зарядов не являются строгими [3].  [c.971]

Различают строгие и приближённые О. п. Квантовый переход наз. запрещённым, если нарушается хотя бы одно О. п. Строгие О. п, обусловлены симметрией системы и строгими законами сохранения и налагают абс. запреты на квантовые переходы. Приближённые О. п. характеризуют переходы между уровнями энергии, к-рые описываются приближёнными законами сохранения. Квантовое число полного угл. момента атома (/) или молекулы (F) является точным, т, к. полный угл. момент является инвариантом группы вращения, поэтому О. п. для J (или F) — строгие, В случае электрич. дипольных переходов возможны изменения квантовых чисел Д/ = J — / = 0, 1 и ЛМ = М — М =  [c.486]

Закон сохранения ядерного заряда (барионного числа) в том, и состоит, что сумма барионных чисел до и после процесса одинакова. Возникает вопрос можно ли экстраполировать этот закон на неисследованную область больших энергий, нельзя ли там ожидать несохранения Я- Б. Зельдович указывает, что здесь на помощь приходит квантовая механика с идеями подбарьерного перехода и принципа неопределенности энергии если бы ядерный заряд не сохранялся при каких-то сверхбольших энергиях, то с малой вероятностью, подбарьерно, он не сохранялся бы и в обычных ядрах. Стабильность атомных ядер косвенно доказывает универсальность закона сохранения барионного (ядерного) заряда.  [c.354]


Квантовые числа Э. ч. разделяются на точные (т. е. такие, к-рые связаны с физ. величинами, сохраняющимися во всех процессах) инеточные (для к-рых соответствующие физ. величиньг в ряде процессов не сохраняются). Спин J связан со строгим законом сохранения момента количества движения и потому является точным квантовым числом. Другое точное квантовое число—электрич. заряд Q. В пределах точности проведённых измерений сохраняются также квантовые числа В к L, хотя для этого не существует серьёзных теоретич. предпосылок. Более того, наблюдаемая барионная асимметрия Вселенной наиб, естественно может быть истолкована в предположении нарушения сохранения барионного числа В (А. Д. Сахаров, 1967). Тем не менее наблюдаемая стабильность протона есть отражение высокой степени точности сохранения В н L нет, напр., распада р- e -l-it ). Не наблюдаются также распады ц- е+у, х +уит. д. Однако боль-щинство квантовых чисел адронов неточные. Изотопич. спин, сохраняясь в сильном взаимодействии, не сохраняется в эл.-магн. и слабом взаимодействиях. Странность, очарование и прелесть сохраняются в сильном и эл.-магн. взаимодействиях, но не сохраняются в слабом взаимодействии. Слабое взаимодействие изменяет также внутр. и зарядовую чётности совокупности частиц, участвующих в процессе. С гораздо большей степенью точности сохраняется комбинированная чётность СР (СР-чётность), однако и она нарушается в нек-рых процессах, обусловленных слабым взаимодействием. Причины, вызывающие несохранение мн. квантовых чисел адронов, не ясны и, по-видимому, связаны гак с природой этих квантовых  [c.602]


Смотреть страницы где упоминается термин Законы сохранения квантовых чисел : [c.524]    [c.149]    [c.486]    [c.16]    [c.145]    [c.146]    [c.180]    [c.207]   
Смотреть главы в:

Ядра, частицы, ядерные реакторы  -> Законы сохранения квантовых чисел



ПОИСК



Закон сохранения

Квантовые числа

Квантовые числа частиц, законы их сохранения

Сохранение

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте