Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругие полуплоскость и плоскость, усиленные периодической системой накладок

Во второй главе дано исследование плоских смешанных задач для упругих тел, усиленных прямоугольными накладками. Здесь рассматривается задач-а о передаче нагрузки от полубесконечной накладки к упругой полуплоскости и плоскости. Нри этом модуль упругости накладки по ее длине изменяется по произвольному закону. В случае однородной накладки при помощи одного интегрального соотношения и аппарата полиномов Чебышева — Эрмита разрешающее интегро-дифференциальное уравнение задачи сведено к дискретному уравнению Винера — Хопфа довольно простой структуры. Таким путем удается получить принципиально повое замкнутое решение задачи о полубесконечной накладке. Далее излагается решение задачи о контактном взаимодействии Стрингера конечной длины и переменной жесткости с упругой полуплоскостью или плоскостью, описываемой интег-ро-дифференциальным уравнением Прандтля при определенных граничных условиях. На основе аппарата полиномов Чебышева это уравнение сведено к вполне или квазивполне регулярной бесконечной системе. Здесь же обсуждены многие частные случаи и произведен их численный анализ. Эта же задача исследуется в случае двух одинаковых стрингеров или периодической системы стрингеров. Дано построение решений задачи о взаимодействии стрингера конечной длины с полуплоскостью, когда концентрация напряжений на концах участка контакта отсутствует. Излагаются другие методы решения задачи о взаимодействии накладки конечной длины с полуплоскостью. Именно, используются асимптотические методы и метод специальных ортонормировап-  [c.11]



Смотреть главы в:

Контактные задачи для тел с тонкими покрытиями и прослойками  -> Упругие полуплоскость и плоскость, усиленные периодической системой накладок



ПОИСК



252 — Упругие системы

Накладка

Периодическая система

Полуплоскость

Система па плоскости

Упругая плоскость

Упругая плоскость и полуплоскость

Усиление



© 2025 Mash-xxl.info Реклама на сайте