Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие струй в элементах пневмоники

ВЗАИМОДЕЙСТВИЕ СТРУЙ В ЭЛЕМЕНТАХ ПНЕВМОНИКИ  [c.101]

Исследование характеристик противотоков при взаимодействии струй в элементах пневмоники. Для выяснения характеристик противотоков при взаимодействии плоских свободных струй была сделана  [c.107]

Эффект отрыва потока от внутренней стенки криволинейного канала используется в элементах пневмоники в сочетании с другими аэродинамическими эффектами. Схема элемента этого типа показана на рис. 21.5, а. Основной поток, подводимый к усилителю по каналу 1, разветвляется, следуя в дальнейшем по каналам 2 и 3. Канал 4 является управляющим. Если к нему не подведено давление, то распределение потоков по каналам 2 и 3 примерно одинаковое. При создании давления в канале 4 в зависимости от величины расхода в нем меняется положение точки отрыва потока в колене 5. Это приводит к тому, что в области взаимодействия струй, вытекающих из каналов 2 и 3, меняется количество движения, которое несет в себе первая из этих струй. Это связано с изменением в ней профиля скоростей, иллюстрируемым рис. 18.2, е. Вследствие изменения условий взаимодействия струй, вытекающих из каналов 2 и 5, меняется направление результирующего потока 6 и соответственно с этим по-разному распределяются части его, поступающие в выходные каналы 7 и 8. Канал 9 служит для сообщения с атмосферой. Перегородка 10 является разделительной. Кар-р май и препятствует отрыву потока на соответ-ствующем участке стенки, благодаря чему этот Рис. 21.4. струйный элемент является усилителем непрерывного действия.  [c.230]


Наряду со все расширяющимся и у нас и за рубежом использованием рассмотренных ранее эффектов непосредственного взаимодействия струй и отрыва потока от стенки в последние годы начата разработка элементов пневмоники, действие которых связано также и с другими аэродинамическими эффектами. Здесь укажем лишь принципиальные схемы этих элементов. Рассмотрим подробнее их характеристики в следующих разделах этой главы.  [c.201]

До недавнего времени пневматические (и гидравлические) вычислительные устройства имели быстродействие до 10— 100 операций в секунду, однако в настоящее время (после разработки элементов пневмоники, работающих только на взаимодействующих струях) предельным считается быстродействие около 10000 операций в секунду. Это позволит целый ряд систем управления летательными аппаратами и двигателями делать струйными (системы стабилизации, трехканальные демпферы и т. д.).  [c.12]

Струйная техника (пневмоника) коренным образом отличается от всех ранее известных пневматических датчиков. В элементах струйной техники полностью отсутствуют какие-либо подвижные детали, а управление осуществляется в результате взаимодействия струй воздуха. Приборы струйной техники миниатюрны, в них допустимо применение печатных схем. При построении простейших элементов используют аэродинамические эффекты взаимодействия струй и обтекания струями стенок. Низкое давление воздуха (200—500 кгс/м )— тоже преимущество этих элементов. Простейший струйный элемент показан на рис. 27, а. С увеличением управляющего давления Ру питающая струя Р все больше отклоняется от Рвых 1. и выходное давление Рвых а растег в функции от Ру по характеристике, показанной на рис. 27, б.  [c.158]

Рассматриваются характеристики течений воздуха, используемых для выполнения ряда операций усиления непрерывных сигналов, релейных переключений, запоминания дискретных величин, логических операций, генерирования колебаний. Основными при этом являются эффекты взаимодействия струй и отрыва струи от стенки. Исследуются вопросы теории струйных элементов, в которых применяются и другие аэродинамические эффекты турбулизация течения, завихривание струй и др. Описываются также методы расчета и экспериментального исследования пневматических дросселей, камер и коммуникационных каналов, имеющих для пневмоники такое же значение, как и струйные элементы. Эти методы могут использоваться и при выполнении аналогичных операций на потоках жидкостей. В приложении приведены Ефаткие сведения из соответствующих разделов гидроаэродинамики.  [c.2]


Исходными при исследовании характеристик струйных элементов пневмоники, которому посвящены гл. IV—VII, являются представления о структуре струй и о процессах их взаимодействия, следующие из теории струй, разработанной Г. И. Абрамовичем, Л. А. Вулисом и В. П. Кашкаровым, М. И. Гуревичем, А. С. Гиневским и др. [1, 3, 4, 5]. Для рассматриваемой области важное значение имеют свойства пристеночных течений, общая теория которых была разработана Л. Г. Лойцянским, Г. Шлихтингом [14, 15, 26] и другими учеными гидроаэродинамиками. Вместе с тем за последнее время ряд работ был специально посвящен изучению аэродинамических процессов, которыми определяются характеристики струйных элементов пневмоники (имеются в виду исследования, проведенные И. В. Лебедевым, Н. Н. Ивановым, С. Л. Трескуновым, Г. Коуэном, Р. Т. Крониным, П. Кийковским и др. [13, 11, 22, 79, 39, 57]. Основное внимание в гл. IV—VI уделено характеристикам элементов, работа которых связана с простым взаимодействием струй и с использованием свойств пристеночных течений. Сей  [c.12]

По аэродинамическим эффектам струйные элементы пневмоники разделяются на элементы, в которых используются характеристики одиночных струй, взаимодействие свободных струй, свойства пристеночных течений (эффект отрыва потока от стенки и др.), турбулизация течения в основной струе под воздействием управляющего давления, завихривание струй, эффект смещения радиальной струи, образующейся при соударении встречных осесимметричных струй, эффект фокусирования струй, свойства сверхзвуковых течений.  [c.16]

Характеристики струйных элементов, в которых используется взаимодействие встречных струй. Использование для целей управления встречных струй, распространяющихся в пристеночной области, было предусмотрено в первых патентных заявках ИАТ АН СССР, касавщихся принципов построения элементов пневмоники [39]. В этих заявках была указана схема взаимодействия струй, показанная на рис. 14.7 при испытаниях струйных элементов данного типа приемный канал располагался так, что его ось была перпендикулярна к линии осей сопел, из которых вытекали встречные струи.  [c.226]

В устройствах пневмоники используются струйные элементы, дроссели, междроссельные камеры. В простейшем струйном элементе имеются каналы, которые могут рассматриваться как дроссели, и имеется камера, в которой взаимодействуют струи, вытекающие из каналов. Моделирование возможно, если воспроизводятся формы течений, характерные для всех участков тракта. Однако, как указывалось в 7, переход от ламинарного к турбулентному течению происходит в каналах при одном граничном значении числа Рейнольдса Reгp, а для струй при других значениях Рвгр, которые также рассчитываются по размерам сечений каналов, из которых вытекают струи те и другие значения Рвгр могут отличаться в десятки раз.  [c.445]


Смотреть страницы где упоминается термин Взаимодействие струй в элементах пневмоники : [c.76]    [c.354]    [c.354]   
Смотреть главы в:

Теория элементов пневмоники  -> Взаимодействие струй в элементах пневмоники



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Взаимодействие струй

Пневмоника

Струя



© 2025 Mash-xxl.info Реклама на сайте