Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Требование к когерентности в голографии

Требование к когерентности в голографии  [c.162]

Голография получила широкое распространение как метод регистрации и восстановления, а также обращения волнового фронта, рассеиваемого произвольным предметом. В голографии естественным образом реализуется уникальная возможность создания оптических копий предметов - (Армирования их трехмерных изображений. Эта возможность, активно используемая в разнообразных приложениях голографии, связана, однако, с необходимостью вьшолнения комплекса серьезных требований к условиям получения голограмм и восстановления волновых фронтов. Речь идет о когерентности источников излучения, механической стабильности элементов, режиме регистрации и т.д. Позтому естественным является поиск новых разновидностей голографии, а также родственных методов, позволяющих обеспечить реализацию процессов регистрации и воспроизведения оптической информации в необычных для традиционной голографии условиях.  [c.5]


Более высокие параметры, необходимые для голо-графических съемок, имеют ионные газовые лазеры на аргоне, криптоне и их смесях. Они обеспечивают большую длину когерентности, высокую по сравнению с гелий-неоновыми лазерами мощность и возможность генерирования на одной из многих длин волн выборочно или одновременно на нескольких, что имеет существенное значение для цветной голографии. Ионный лазер имеет призму, эталон, регулируемую диафрагму (рис. 22). Активным элементом служит газоразрядная трубка, в которой накачка осуществляется дуговым разрядом в ионизированном газе с высокой плотностью тока (например, ток разряда достигает 30—50 А при диаметре канала около 3 мм). Поэтому в конструкции разрядной трубки предъявляются высокие требования к катоду и устойчивости стенок трубки к действию разряда. Необходимо принудительное водяное охлаждение (например, мощность, потребляемая лазером, составляет 25 кВт и выше).  [c.42]

В связи с тем, что в голографии используют когерентное излучение, весьма строгие требования предъявляются к светорассеянию материала. Светорассеяние уменьшает отношение сиг-  [c.139]

Следует отметить, что использование голографического оборудования в цеховых и полевых условиях в значительной мере еще затрудняется требованиями по механической стабильности голографических интерферометров и степени когерентности используемых лазеров. В этой связи важную роль приобретает разработка таких методов и схем голографии, для которых эти требования могли бы быть заметно ослаблены. К числу таких методов относится метод голографии сфокусированных изображений [22].  [c.11]

По мере того как голография развивалась, проходя через все эти ступени, качество восстановления изображений значительно улучшалось, но для этого приходилось изобретать все более сложные и утонченные методы. Например, если в одноосевой голографии требования к стабильности такие же, как и в обычной фотографии (при одинаковых временах экспонирования в обоих случаях), то для внеосевой голографии, голографии в рассеянном свете и голографии трехмерных объектов требуется существенно более высокая стабильность, причем в последнем случае она должна быть намного выше, чем во всех предыдущих. Аналогично возросли требования и к когерентности. В случае одноосевой голографии они были весьма скромными. В противоположность общепринятому мнению внеосевая голография не требовала более высокой когерентности. Голография в рассеянном свете ставила уже более жесткие требования к коге-)ентности, но не столь жесткие, чтобы мог потребоваться лазер. aкoнeц, в случае голографии трехмерных объектов эти требования по сравнению с предыдущими случаями возросли сразу настолько резко, что здесь уже без лазера действительно нельзя было обойтись.  [c.21]


Прямое голографирование открывает уникальные возможности в фотограмметрии компактных объектов. Глубина резкости восстановленного мнимого изображения зависит лишь от параметров используемого когерентного излучения, и ею можно управлять в соответствии с рассматриваемой задачей. В стереофотографии с целью получения большой глубины резкости прибегают к компромиссу, теряя в разрешении. Множество перспектив голографического изображения облегчает измерение координат точки, увеличивает точность и делает процедуру измерения менее утомительной. Эту операцию может выполнить даже человек с монокулярньий зрением, что было бы невозможно в стереофотограмметрии. На рис. 2,6 приведен пример получения контуров при монокулярном зрении. Однако голография имеет свои собственные ограничения. Если фотограмметрия, проводимая с помощью стереофотографии, не имеет ограничений на размер исследуемого объекта, то геометрические и физические аспекты голографии вместе с требованием к когерентному освещению накладывают определенные ограничения на размер объекта. При измерениях голографического мнимого изображения используется масштаб лишь один к одному и нельзя добиться увеличения, не исказив при этом восстановленное изображение. В этом смысле стереофотограмметрия имеет определенные преимущества перед непосредственным голографированием. Однако способность регистрировать и обмерять трехмерные объекты без нарушения масштаба открывает новые возможности и делает голографию ценным дополнением к фотограмметрии компактных объектов. Курц и др. [71, а также Микэйл и др. [8] сделали хороший обзор работ, выполненных на эту тему.  [c.682]

Гл. 6 содержит теоретические и экспериментальные основы оптической голографии, которую Габор назвал методом образования изображения путем восстановления волнового фронта. Здесь рассматриваются проективная голография Френеля, без-линзовая голография Фурье с высоким пространственным разрешением и метод устранения эффекта протяженности источника с целью сохранения высокого пространственного разрешения по предмету. Затем излагается требование к когерентности света в голографии. В конце главы описан классический эксперимент Строука с голограммой, полученной при некогерентном освещении, и даны экспериментальные обоснования возможности применения голографических принципов для рентгеновских лучей.  [c.9]

Идея записи и воспроизведения структуры электромагнитных полей была впервые высказана и продемонстрирована Дэннисом Габором в 1948 г. Им же был введен термин голограмма (в переводе — полная запись ). Работы Габора не имели широкого развития до появления лазеров, так как для голографии необходимы источники света с высокой пространственной и временной когерентностью при требованиях к мощности, несовместимых с возможностью обычных источников света. Как самостоятельная область оптики голография возникла после открытия лазеров. В 1962 — 1963 г.г. Лейт и Упатниекс впервые продемонстрировали высококачественные голограммы двухмерных и трехмерных объектов. Независимо от них в это же время Ю.Н. Денисюк, опубликовал экспериментально подтвержденную идею получения и восстановления объемных голограмм, имеющих принципиальное преимущество. Этот метод мы изложим чуть позже.  [c.354]

Последние десять лет ознаменовались интенсивным развитием голографии и той части оптики, на которой базируется голография — когерентной оптики. Это развитие явилось следствием значительного события в физике— создания в результате работ Н. Г. Басова, А. М. Прохорова и Г. Таунса мощных когерентных ис-гочников света — лазеров. Последователи изобретателл голографии Д. Габора чл.-корр. АН СССР Ю. И. Де-нисюк, американский ученый Е. Лейт и др. — внесли немало новых идей, способствующих дальнейшему развитию этого нового направления. Работы фундаментального характера здесь тесно переплетались с предложениями по практическому применению голографии в самых различных областях науки и техники. Возникла необходимость в пересмотре многих привычных представлений о формировании изображений объекта, а также о передаче и записи световой информации от объекта. Одновременное развитие вычислительной техники и установление высоких требований к ней привели к переплетению голографии и когерентной оптики с техникой обработки информации, В связи с этим еще больше повысился интерес к этим направлениям и возникла необходимость в подробном анализе прйблем передачи, обработки и записи информации методами голографии и когерентной оптики. В предлагаемой читателю книге сделана попытка частично удовлетворить интерес к поставленным проблемам. Многочисленные исследования, выполненные в этой области, хотя и не охватывают полностью все вопросы, возникающие при рассмотрении перечисленных проблем, все же являются достаточными для систематического изложения последних.  [c.5]


Методы голографии изображений, к которым можно отнести и спекл-интерферометрию с регистрацией спеклограмм в плоскости изображения, способствуют общему прогрессу голографии и когерентнЫ оптики в направлении создания приемов и методик, допускающих существенное ослабление требований к злементам оптаческой схемы, к условиям регистрации и воспроизведения информации об исследуемых объектах. Практические достоинства методов голографии сфокусированных изображений открыли ряд новых возможностей, недоступных традиционной голографии.  [c.215]

В заключение следует заметить, что в голографической интерферометрии требования к источникам света те же самые, что и в самой голографии собственно, необходимо иметь достаточную световую энергию для освещения объекта, чтобы голограмма была проэкспонирована должным образом, и достаточную когерентность света, так чтобы голограмма могла быть сформирована, В действительности испытуемый объект предъявляет дополнительные требования к мощности и длительности экспозиции источника света. В конечном счете то, насколько источник приближается к идеальному, определяется для данной задачи финансовыми возможностями экспериментатора.  [c.510]


Смотреть страницы где упоминается термин Требование к когерентности в голографии : [c.17]    [c.392]    [c.294]   
Смотреть главы в:

Введение в когерентную оптику и голографию  -> Требование к когерентности в голографии



ПОИСК



Голография

Когерентная (-ое)

Когерентность



© 2025 Mash-xxl.info Реклама на сайте