Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочка нулевой кривизны со свободными краями

Пусть оба поперечных края оболочки нулевой кривизны свободны и к ним приложены краевые силы Sl, Т п, Sl соответственно. Тогда  [c.226]

Будем считать, как и в 15.17, что расчету подлежит консольная оболочка нулевой кривизны с поперечными краями = ц, = а г. но теперь будет предполагаться, что поверхностная нагрузка отсутствует, а к свободному краю (а = ц) приложены тангенциальные силы 7 ( g) и S21 ( г)- Тогда тангенциальные граничные условия примут вид  [c.215]


В теории изгибаний показано, что незамкнутая поверхность со свободными краями не является жесткой. Поэтому согласно теореме о возможных изгибаниях соответствующая полная краевая задача безмоментной теории не должна, вообще говоря, иметь решения. Это подтвердилось на примере замкнутой оболочки нулевой кривизны, рассмотренной в 15.24. При этом выяснилось, что в данном случае теорема о возможных изгибаниях полностью выполняется.  [c.262]

В этом случае некоторые теоремы существования решений полной краевой задачи безмоментной теории формулируется точно так же, как и для оболочки с одним краем. Примером могут служить оболочки, края которых жестко заделаны в обоих тангенциальных направлениях. Как уже говорилось в 17.34, решение полной задачи в этом случае существует и единственно при любой, достаточно гладкой нагрузке, независимо от числа краев (если только они неасимптотические) и даже независимо от знака кривизны срединной поверхности. По-видимому, сохраняется при любом числе краев также и теорема существования, обсужденная в 18.36 надо только требовать, чтобы все края оболочки были неасимптотическими и свободными в обоих нетангенциальных направлениях. Для оболочек положительной кривизны это следует из результатов работ [16—19], в которых теорема доказана при любом числе краев. В 15.24 показано, что теорема остается в силе для оболочек нулевой кривизны и не видно оснований предполагать, что исключение представят оболочки отрицательной кривизны. Более сложным является случай, когда гауссова кривизна оболочки меняет знак, так как при этом может иметь место касание с плоскостью вдоль замкнутой линии, что является нарушением условий теоремы о возможных изгибаниях ( 15.21). Вместе с тем не исключено, что теорема снова станет справедливой при отсутствии такого касания.  [c.263]


Смотреть главы в:

Теория упругих тонких оболочек  -> Оболочка нулевой кривизны со свободными краями



ПОИСК



Краям

Кривизна

Кривизна кривизна



© 2025 Mash-xxl.info Реклама на сайте