Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критические нагрузки прямых упругих стержней

Критическую нагрузку для сжатого продольными силами стержня можно найти непосредственно, исследовав поведение идеального стержня, который является идеально прямым и сжимается центрально приложенными силами (линии действия сил проходят через центр тяжести поперечного сечения). Рассмотрим сначала тонкий идеальный стержеНь длиной Ь, нижний конец которого заделан, а верхний свободно перемещается (рис. 10.4, а). Материал стержня считается линейно упругим. Если осевая нагрузка Р не превышает критического значения, то стержень остается прямым и претерпевает только осевое сжатие. Такая прямолинейная форма равновесия является устойчивой это означает, что если приложить поперечную силу и создать небольшой прогиб, то при устранении поперечной силы прогиб исчезает и стержень вновь становится прямым. Однако при постепенном увеличении Р будет достигнуто состояние нейтрального равновесия, когда нагрузка Р станет равной Р р.  [c.392]


Примером может служить центральное сжатие первоначально прямого упругого стержня. При небольших значениях сжимающей силы прямолинейная форма —единственная и притом устойчивая форма равновесия малым возмущениям этой формы, которые осуществляются, например, при помощи малой дополнительной поперечной нагрузки, соответствуют малые прогибы. При критическом значении сжимающей силы Ркр прямолинейная форма становится неустойчивой, и после малых возмущений стержень приобретает новую (устойчивую) форму равновесия, которой соответствует изогнутая ось.  [c.323]

Как оказывается, при некоторых определенных значениях внешних сил упругая система может иметь несколько положений равновесия, причем одни из них устойчивы, другие неустойчивы. Для выяснения этого вопроса обратимся к примеру стержня, сжатого силой Р (рис. 4.1.1). Предполагается, что стержень идеально прямой и сила приложена строго центрально (что практически невозможно). При указанных идеальных условиях орямо-линейная форма стержня всегда является возможной формой его равновесия. Для суждения об устойчивости этой формы равновесия нужно сообщить возмущение, например приложить малую поперечную нагрузку Q, которая вызовет прогиб. При отсутствии сжимающей силы Р малая поперечная сила вызывает малый прогиб. Если сила Р невелика, то положение останется таким же и равновесие стержня сохраняется устойчивым. Более строгое определение устойчивости состоит в следующем. Равновесие стержня устойчиво, если, задавшись любой величиной г) > О, всегда можно указать такую конечную величину е>0, что при (31 <е вели- чина прогиба ни в одной точке не достигнет величины т], т. е. будет 1г 1<г . Оказывается, как мы увидим Рис. 4.1.1 далее, что это условие не выполняется, если сила Р превышает некоторое критическое значение Р . При Р> Рк равновесие стержня становится неустойчивым, это значит, что сколь угодно малое возмущение достаточно для того, чтобы возникли большие прогибы.  [c.114]


Смотреть страницы где упоминается термин Критические нагрузки прямых упругих стержней : [c.94]   
Смотреть главы в:

Строительная механика ракет  -> Критические нагрузки прямых упругих стержней



ПОИСК



Нагрузка критическая

Стержни Нагрузки критические

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие



© 2025 Mash-xxl.info Реклама на сайте