Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейные задачи и возможности их решения на электрических моделях

В связи с повышенными требованиями к теплотехническим расчетам вопрос о решении нелинейного уравнения теплопроводности становится исключительно важным. Этот вопрос приобретает решающее значение для тепловых устройств и установок, работающих в не- стационарном тепловом режиме. Аналитическое решение таких задач, как уже отмечалось, представляется сложным. Применение расчетных методов требует большой затраты времени. Принципиальная возможность решения нелинейного уравнения нестационарной теплопроводности на специализированных электрических моделях из сопротивлений, емкостей и индуктивностей была изложена в гл. 7 и 8. Решение нелинейных задач тепло-переноса может оказаться более перспективным и результативным, если будут найдены пути практической реализации нелинейности в электрических моделях с сосредоточенными параметрами. Практическая реализация нелинейности сводится к обеспечению переменности сосредоточенных параметров модели и может быть осуществлена двумя различными методами.  [c.328]


Кроме сведений о широко применяемых методах исследования задач теплопроводности, в монографии уделено большое внимание разработанным автором методам и вопросам их реализации на различного рода электрических моделях. При этом предлагаемые методы и устройства следует рассматривать не только как аппарат для непосредственного решения нелинейной задачи, но и как средство оценки влияния нелинейностей и определения пределов, в которых возможно линейное решение. Эта область приложения приобретает особое значение при исследовании температурных полей таких сложных объектов, каковыми являются элементы паровых и газовых турбин, так как появляется возможность решения основной теплофизической задачи в линейной постановке после оценки влияния нелинейностей с помощью предлагаемых методов. Кроме того, если решения, полученные на-электрических моделях, не удовлетворяют заданной точности, то их можно рассматривать в качестве первого приближения для расчетов на ЭЦВМ.  [c.4]

Нелинейные задачи и возможности их решения на электрических моделях  [c.17]

Рассмотрим использование метода подстановок в сочетании с электрическим моделированием. Такой подход к решению нелинейных задач теплопроводности дает возможность уменьшить трудоемкость решения, проводимого методом итераций на сетках переменной структуры, ввиду сокраш,ения числа перенастраивающихся в процессе решения элементов сетки и получать решение на моделях постоянной структуры. То обстоятельство, что применение подстановок требует обратного перехода от моделируемой функции к температуре, не является существенным, так как указанный переход легко осуществляется одним из способов, о которых речь будет идти ниже.  [c.88]

Традиционные методы моделирования температурных полей на электрических моделях с использованием серийно выпускаемых нашей промышленностью электрических интеграторов или аналогичных средств индивидуального изготовления имеют весьма ограниченные возможности для решения нелинейных задач теплопроводности. Например, такие широко распространенные электроинтеграторы, какЭГДА, ЭИНП, в которых в качестве моделирующей среды используется электропроводная бумага, резистивно-емкостные сетки (в том числе и универсальная сеточная модель УСМ-1) без применения дополнительных приспособлений и устройств, а также без разработки специальных методов решения не приспособлены для решения нелинейных задач. Практически единственными моделями, на которых нелинейные задачи могут быть решены без дополнительных методик и устройств, являются резистивные сетки с изменяющейся структурой. Задачи на таких сетках решаются методом Либмана [324], который предполагает выполнение решения последовательно на каждом шаге во времени с использованием итераций внутри каждого шага и соответствующим пересчетом и корректировкой элементов структуры, в общем случае, после каждого приближения.  [c.18]



Смотреть страницы где упоминается термин Нелинейные задачи и возможности их решения на электрических моделях : [c.383]   
Смотреть главы в:

Электрическое моделирование нелинейных задач технической теплофизики  -> Нелинейные задачи и возможности их решения на электрических моделях



ПОИСК



Модель возможности

Модель нелинейная

Модель электрическая

Нелинейные задачи

Решение нелинейных задач



© 2025 Mash-xxl.info Реклама на сайте