Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние воронок напряжения

Следует по возможности избегать натекания тока на другие сооружения в области анодных воронок напряжения. Поэтому трубопроводы в анодной воронке напряжения должны иметь изоляцию с повышенным сопротивлением не допускаются размещение здесь какой-либо неизолированной арматуры и контакты с армированными (железобетонными) колодцами, фундаментами или заземленными электрическими установками. При прокладке других трубопроводов поблизости от существующих групп анодных заземлителей необходимо уменьшать натекающий ток применением возможно более эффективной изоляции, например полиэтилена. На рис. 10.18 показано распределение потенциалов труба — грунт для трубопровода, проложенного параллельно существующему анодному заземлителю на расстоянии 5 м от него и имеющего в области анодной воронки напряжений особо эффективную изоляцию из полиэтилена. При этом влияние воронки напряжений на новый трубопровод было предотвращено. Для кабелей с пластмассовой оболочкой, прокладываемых в области размещения анодных заземлителей, тоже нет никакой опасности влияния воронки напряжений.  [c.242]


Влияние воронок напряжения  [c.427]

Рис. 24.10. Требуемый защитный ток и распределение потенциала по длине трубопровода, имеющего катодную защиту А — анодные заземлители Б — влияние воронки напряжений вокруг анодных заземлителей Рис. 24.10. Требуемый защитный ток и распределение потенциала по <a href="/info/26313">длине трубопровода</a>, имеющего <a href="/info/6573">катодную защиту</a> А — <a href="/info/39582">анодные заземлители</a> Б — влияние воронки напряжений вокруг анодных заземлителей
Для оценки влияния нескольких дефектов можно принять, что они находятся на таком большом расстоянии один от другого, что воронки напряжения вокруг них не оказывают взаимного влияния одна на другую [II]. Суммарное сопротивление Rg в случае п дефектов диаметром di определяется по формуле для параллельного соединения отдельных сопротивлений R согласно выражению (5.6)  [c.149]

Хотя сопротивление растеканию тока и не изменяется, увеличением высоты слоя грунта над анодным заземлителем можно добиться сглаживания воронки напряжения на поверхности на расстоянии до 20 м от его оси. Это может иметь значение для ослабления влияния, оказываемого заземлителем на другие подземные сооружения. На рис. 10.12 показаны воронки напряжения над глубинными анодными заземлите-лями длиной 30 м при различной высоте слоя грунта над ними.  [c.235]

Такое влияние можно определить путем включения и выключения. станции катодной защиты по изменению потенциала другого сооружения и по виду воронки напряжений в грунте (см. раздел 3.6.2.1). По DIN 57150 и VDE 0150 анодные повреждения на соседних сооружениях возможны в таких местах, где напряжение между сооружением, испытывающим влияние, и поставленным непосредственно над ним на землю электродом сравнения при протекании защитного тока изменяется более чем на 0,1 В в положительную сторону в частности а) у сооружений, не имеющих катодной защиты — по сравнению с напряжением при отключенном защитном токе б) у сооружений с катодной защитой — по отношению к защитному потенциалу Ua.  [c.237]

Влияние, оказываемое воронкой напряжения над анодными заземлителями  [c.238]

Наибольшее влияние на потенциал других трубопроводов и кабелей обычно оказывают воронки напряжения над анодными заземлителями в системах катодной защиты, в которых имеется высокая плотность защитного тока и большой градиент потенциалов в грунте. Поскольку при этом происходит смещение потенциалов только в отрицательную сторону, опасности анодной коррозии не возникает. Однако в коррозионных системах группы П (см. раздел 2.4), например для алюминия и свинца в грунте, все же может произойти катодная коррозия. Величина натекающих токов зависит от влияющего напряжения, т. е. от потенциала в воронке напряжения над сооружением, испытывающим влияние СКЗ (или местом), по отношению к далекой земле, и от сопротивления изоляции этого сооружения. В принципе при анализе влияния, оказываемого катодной воронкой напряжений, следует различать два случая  [c.238]


Трубопровод, испытывающий влияние, имеет очень большую длину и проходит далеко за пределы анодной воронки напряжений. Такой случай встречается очень часто. При этом ток, натекающий поблизости от анодных заземлителей, стекает только в отдаленном участке с пологим изменением потенциала и за пределами анодной воронки напряжений. Он вызывает там лишь незначительное положительное изменение потенциала.  [c.238]

Рис. 10.14. Влияние, оказываемое на длинный (полученный закорачиванием изолирующего элемента) и короткий трубопроводы анодной воронкой напряжений (до 1 км) Z — расстояние по длине трубопровода Р — место измерения потенциала / — изолирующий фланец S —катодная станция / — включенные анодные заземлители, длинный трубопровод 2 —включенные анодные заземлители, короткий трубопровод 3 — выключенные анодные заземлители, оба трубопровода Рис. 10.14. Влияние, оказываемое на длинный (полученный закорачиванием <a href="/info/39648">изолирующего элемента</a>) и <a href="/info/26314">короткий трубопроводы</a> <a href="/info/39578">анодной воронкой напряжений</a> (до 1 км) Z — расстояние по <a href="/info/26313">длине трубопровода</a> Р — <a href="/info/495032">место измерения</a> потенциала / — <a href="/info/495410">изолирующий фланец</a> S —<a href="/info/183940">катодная станция</a> / — включенные <a href="/info/39582">анодные заземлители</a>, <a href="/info/26313">длинный трубопровод</a> 2 —включенные <a href="/info/39582">анодные заземлители</a>, <a href="/info/26314">короткий трубопровод</a> 3 — выключенные <a href="/info/39582">анодные заземлители</a>, оба трубопровода
Влияние, оказываемое катодной воронкой напряжения  [c.240]

На другие подземные трубопроводы, пересекающиеся в области воронки напряжений с трубопроводами, имеющими катодную защиту, за пределами воронки напряжений натекает защитный ток, стекающий с них в области катодной воронки напряженнй, вызывая там анодную коррозию. Потенциал незащищенного трубопровода (испытывающего влияние), измеренный при помощи электрода сравнения над местом пересечения, представляет собой в основном омическое падение напряжения, вызванное защитным током, текущим в грунте к дефекту изоляции трубопровода с катодной защитой. На рис. 10.16 схематически показано распределение потенциалов в грунте, характер воронки напряжений и распределение потенциалов на другом трубопроводе, испытывающем влияние системы катодной защиты.  [c.240]

Для определения степени влияния, оказываемого на другие трубопроводы станциями катодной защиты, нет необходимости предусматривать пункты измерений потенциала в каждом месте их пересечения с трубопроводами, имеющими катодную защиту, поскольку величина катодной воронки напряжений мол<ет быть оценена измерением падения напряжения на поверхности земли [ 18]. На рис. 10.17 показана средняя плотность тока (в функции от условного прохода трубопроводов при высоком удельном электросопротивлении грунта р = 100 Ом-м), вызывающая на поверхности земли при цилиндрическом поле падение напряи<ения AUx = = 100 мВ. При этом величина AUx измеряется (по рис. 3.31) по направлению перпендикулярно к трубопроводу (как Пд ) или (по рис. (10.15) на расстоянии х = = 10 м. Отсюда видно, что  [c.241]

Рис. 10.16. Распределение тока н воронка напряжений ДС/д. у дефекта в изоляции трубы па трубопроводе с катодной защитой и изменение потенциала труба — грунт у трубопровода, испытывающего влияние воронки А — защитный ток Рис. 10.16. Распределение тока н <a href="/info/39605">воронка напряжений</a> ДС/д. у дефекта в <a href="/info/206367">изоляции трубы</a> па трубопроводе с <a href="/info/6573">катодной защитой</a> и изменение потенциала труба — грунт у трубопровода, испытывающего влияние воронки А — защитный ток
Влияние на другие сооружения, вызываемое анодными и катодными воронками напряжений, может быть в любом случае устранено электрическим соединением сооружений. При этом достигается уравнение потенциалов сооружений. На рис. 10.1 показана такая уравнительная перемычка на пересечении трубопровода, имеющего катодную защиту, с другим незащищенным трубопроводом. Ток, натекающий в воронке напряжений от анодных заземлителей в трубопровод, не имеющий защиты, теперь уже не Стекает в месте пересечения в грунт как коррозионный ток, а уходит через уравнительную перемычку к трубопроводу, имеюще-  [c.241]


При влиянии, оказываемом катодной воронкой напряжения от дефекта диаметром d,, плотность стекающего тока /а в месте дефекта диаметром di в изоляции другого трубопровода при удельном электросопротивлении грунта р и расстоянии между обоими дефектами s может быть приблизительно рассчитана по формуле  [c.242]

Катодная защита с помощью протектора обеспечивается при правильном ее выполнении обычно без больших технических затрат. Однажды смонтированная система защиты работает без обслуживания, нуждаясь лишь в эпизодическом контроле потенциала. Системы защиты с протекторами (гальваническими анодами) независимы от сети электроснабжения и ввиду низкого движущего напряжения обычно не создают помех для близлежащих объектов. Ввиду малости напряжений обычно не возникает проблем и по технике безопасности электрооборудования. Системы с протекторами поэтому можно размещать на взрывоопасных участках. Для защиты от грунтовой коррозии протекторы могут быть размещены вплотную к защищаемому объекту в той же траншее (в том же котловане), так что практически не требуется никаких дополнительных земляных работ. Благодаря подсоединению протекторов к объектам, испытывающим влияние других источников, в области катодной воронки напряжения от внешних источников можно обеспечить, например при ремонтных работах, ограниченную защиту этих опасных мест (защиту горячих участков ). На органические покрытия для пассивной защиты от коррозии протекторная защита не влияет или оказывает лишь незначительное влияние (см. раздел 6). Поскольку защитные системы с протекторами ввиду низкого движущего напряжения должны выполняться возможно более низкоомными (см. рис. 7.2), потенциал получается сравнительно постоянным. Если потенциал объекта защиты становится более положительным, то отдаваемый ток защиты увеличивается, и наоборот. Поэтому можно говорить и о саморегулируемости (потенциала).  [c.197]

Согласно рис. 10.4, 10.5 и 10.12, влияние анодной воронки напряжения может быть устранено и выбором достаточно большого расстояния до других сооружений (до анодных заземлителей), и применением малых анодных напряжений. Поэтому место установки анодных заземлителей следует выбирать не только по соображениям минимального удельного сопротивления грунта и возможно большей близости подвода питания электроэнергией, но и с учетом расстояния до других трубопроводов. Малые анодные напряжения могут быть получены применением нескольких станций катодной защиты с меньшей токоотдачей (в амперах), увеличением длины анодных заземлителей или применением глубинных анодных заземлителей. Поэтому при катодной защите трубопроводов на городской территории часто применяют глубинные анодные заземлители. При этом допустимое расстояние от других сооружений может быть существенно уменьшено.  [c.242]

На топливозаправочных станциях с несколькими резервуарами-храиилищами при общем потреблении защитного тока до нескольких сот миллиампер равномерное распределение защитного тока следует стремиться обеспечивать его подводом через несколько анодных зазем-лнтелей, расположенных в разных местах на территории станции. Распределение защитного тока между несколькими анодными заземлителями позволяет также избежать сравнительно больших местных анодных воронок напряжения и тем самым ослабить вредное влияние катодной заш,иты на близрасположенные посторонние сооружения.  [c.271]

Во время пуска станции катодной защиты в эксплуатацию при напряжении около 4 В установился защитный ток в 120 мА. При этом во всех точках измерения потенциалов, в том числе и между резервуарами, где потенциалы определяли при помощи измерительных каналов на глубине около 2,3 м от поверхности земли в местах наименьшего расстояния между соседними резервуарами, были получены достаточные потенциалы выключения f n/ uSOi пределах минус 0,88—0,95 В. Силы анодных токов тоже показаны на рис. 12.3. Благодаря выбранному расположению анодных заземлителей и равномерному распределению тока воронки напряжения над анодными заземлителями получаются небольшими, так что посторонние сооружения, находящиеся на территории топливозаправочной станции, не испытывают неблагоприятного влияния.  [c.277]

Влияние, оказываемое на другие трубопроводы или кабели в области воронки напряжений около анодных заземлителей станций катодной защиты, определяется распределением потенциалов вокруг этих заземлителей. Распределение потенциалов обуславливается выведенными выше сопротивлениями растеканию тока и для различных форм анодных за-землителен представлено в табл. 24.1. Чтобы выявить основные влияющие параметры, можно рассмотреть случай полусферического заземли-теля. Например Ur, определяющее величину влияния на удалении г может быть рассчитано по формуле (24.11)  [c.456]

Различными учеными выполнены представительные экспериментальные исследования с целью выявить зависимость глубины внедрения и параметров разрушения от таких контролируемых факторов пробоя, как межэлектродное расстояние, амплитуда и форма импульса напряжения, диэлектрические и прочностные свойства жидкой среды и твердого тела. Эти исследования вьшолнены на большой гамме горных пород (более 100 разновидностей) при пробое их в трансформаторном масле, дизельном топливе, растворах на нефтяной основе, воде. В некоторых случаях влияние отдельных факторов проявляется вполне однозначно, но часто регистрируется суммарный эффект, отражающий влияние нескольких факторов, в том числе с противоположной направленностью действия. Не всегда представляется возможным полностью исключить наложение воздействия факторов последующей послепробивной стадии процесса. Например, об истинной траектории канала пробоя в образцах горной породы можно судить лишь косвенно по фиксируемым параметрам откольной воронки. В то же время глубина откольной воронки превышает глубину внедрения разряда, так как в объем разрушения вовлекается зона растрескивания породы вблизи канала разряда. В гетерогенных горных породах  [c.31]



Смотреть страницы где упоминается термин Влияние воронок напряжения : [c.131]    [c.239]    [c.243]    [c.244]    [c.48]    [c.141]    [c.17]   
Смотреть главы в:

Катодная защита от коррозии  -> Влияние воронок напряжения



ПОИСК



Влияние напряжений

Влияние, оказываемое воронкой напряжения над анодными заземлителями

Влияние, оказываемое катодной воронкой напряжения

Воронки напряжений

Воронков



© 2025 Mash-xxl.info Реклама на сайте