Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита с применением анодных заземлителей

Катодная защита с применением анодных заземлителей  [c.303]

Трудность, указанная в пункте в, может быть преодолена применением локальной катодной защиты от коррозии, как указано в разделе 13. Однако это возможно,, например, на промышленных объектах, но не может быть осуществлено для сетей коммунального электроснабжения. Эффект локальной катодной защиты может быть получен также при специально подобранном расположении анодных заземлителей в грунтах с высоким омическим сопротивлением (см. раздел 13.2) и — с ограничением протяженности зоны защиты—на защищаемых объектах с высоким продольным сопротивлением. Это наблюдается в случае кабелей со свинцовой оболочкой (см. рис. 14.1). Обычная катодная защита от коррозии возможна, если защищаемый объект отсоединен от заземлителей при помощи специальных разъединительных устройств. Это технически выполнимо при прокладке высоковольтных кабелей в стальных трубах.  [c.307]


Затраты на электрохимическую защиту от коррозии и экономический эффект от применения систем защиты зависят от весьма различных влияющих факторов, так что дать оценки, справедливые во всех случаях, здесь едва ли возможно. В частности, требуемый защитный ток и удельное электросопротивление среды вокруг защищаемого сооружения и анодных заземлителей могут колебаться в широких пределах и соответственно влиять на затраты. Обычно электрохимическая защита оказывается особенно экономичной в тех случаях, когда металлические сооружения должны быть сохранены в течение многих лет. Грубо ориентировочно затраты на сооружение системы катодной защиты для металлических конструкций, не имеющих защитных покрытий, можно принимать равными примерно 1—2 % строительной стоимости защищаемого объекта, а если поверхности имеют защитные покрытия, то соответствующие затраты составят приблизительно 0,1—0,2 % стоимости строительства объекта.  [c.413]

Одним из направлений в области автоматизации катодной защиты подземных коммуникаций является применение защитных устройств с прерывистым режимом работы, использующих свойство ряда подземных и морских сооружений сохранять защитный потенциал относительно окружающей среды длительное время после отключения защитного тока. Такие устройства значительную часть времени могут находиться в отключенном состоянии, что обеспечивает экономию электроэнергии и увеличивает срок службы анодных заземлителей.  [c.18]

Катодная защита протяженных трубопроводов, распределительных сетей, трубопроводов на промышленных предприятиях и других подземных сооружений, для которых требуется большой защитный ток, обычно обеспечивается с применением анодных заземлителей, на которые на-кладывается ток от внешнего источника. Требуемое напряжение преобразователя (выпрямителя) и следовательно и мощность станции катодной защиты определяется сопротивлением растеканию тока с анодных заземлителей в грунт—наибольшим сопротивлением в цепи защитного тока. Чтобы снизить электрическую мощность и соответственно сократить текущие эксплуатационные издержки, нужно обеспечить возможно меньшее сопротивление растеканию тока в грунт (см. раздел 10.4.1). Согласно формуле (24.10), это сопротивление R прямо пропорционально удельному сопротивлению грунта р. Поэтому анодные заземлители располагают по возможности на участках с наименьшим удельным сопротивлением грунта [1]. В настоящее время анодные заземлители обычно размещают в общей протяженной коксовой обсыпке, устанавливая их горизонтально или вертикально [2].  [c.227]


Измерение сопротивления растеканию тока, например от протекторов или от анодных заземлйтелей станций катодной защиты, проводится по трехэлектродной схеме. При этом измерительный ток подводится (рис. 3.23) через измеряемый и вспомогательный заземлители, а напряжение измеряется между заземлйтелей и зондом. Вспомогательный за-землитель должен быть удален примерно на четырехкратную длину контролируемого заземлителя (на 40 м), а зонд — примерно на двукратную длину заземлителя (на 20 м). Отсюда следует, что измерить сопротивление растеканию тока с трубопроводов и рельсов практически невозможно. При измерении сопротивления растеканию с изолированных участков в грунт всегда охватывается только ограниченная длина трубопровода, зависящая от примененной частоты.  [c.118]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Согласно рис. 10.4, 10.5 и 10.12, влияние анодной воронки напряжения может быть устранено и выбором достаточно большого расстояния до других сооружений (до анодных заземлителей), и применением малых анодных напряжений. Поэтому место установки анодных заземлителей следует выбирать не только по соображениям минимального удельного сопротивления грунта и возможно большей близости подвода питания электроэнергией, но и с учетом расстояния до других трубопроводов. Малые анодные напряжения могут быть получены применением нескольких станций катодной защиты с меньшей токоотдачей (в амперах), увеличением длины анодных заземлителей или применением глубинных анодных заземлителей. Поэтому при катодной защите трубопроводов на городской территории часто применяют глубинные анодные заземлители. При этом допустимое расстояние от других сооружений может быть существенно уменьшено.  [c.242]

Проектирование станции катодной защиты на городской территории ведется в соответствии с рекомендациями раздела 11,3. При наличии некоторого опыта можно успешно использовать ранее сооруженные станции катодной защиты для локализации имеющихся контактов [24]. Выбор места для расположения анодных заземлителей обычно ограничивается. Здесь нередко приходится использовать участки городских парков и кладбищ. При нехватке места и для предотвращения трудностей, связанных с влиянием на посторонние соорул<ения, выгодно применение глубинных анодных заземлителей. При прокладке новых трубопроводных сетей с малым потреблением защитного тока анодные заземлители можно размещать и на окраине города, если выполняется условие (11.4).  [c.261]

Возможности конструктивно удобного размещения анодов (анодных заземлителей) и подсоединительных кабелей весьма желательно учитывать уже при проектировании объектов с катодной защитой. При применении способа с наложением тока от постороннего источника тоже безусловно необходимо механически надежное крепление анодов и подсоединительных кабелей к защищаемому сооружению. Возможности монтажа кабелей тоже должны быть продуманы еще при проектировании защищаемого объекта. Поскольку речь обычно идет об очень больших защитных токах, рекомендуется располагать кабели симметрично и рассчитывать как показано на рис. 8.2. От клеммных коробок и разъемных соединений необходимо отказаться, чтобы избежать переходных сопротивлений и коррозионных повреждений.  [c.344]


Современная система катодной защиты от коррозии с применением высоконадежных станций катодной защиты типа Минерва -3000, малорастворимых анодных заземлителей типа АЗМ-ЗХ, аппаратуры совместной защиты типа БРТ и аварийного ввода резерва БАВР позволяют значительно снизить затраты на обслуживание материальный ущерб в результате снижения количества отказов в работе системы катодной защиты уменьшить количество СКЗ - от  [c.158]


Смотреть страницы где упоминается термин Катодная защита с применением анодных заземлителей : [c.250]    [c.294]   
Смотреть главы в:

Катодная защита от коррозии  -> Катодная защита с применением анодных заземлителей



ПОИСК



V катодная

Анодная защита

Анодные заземлители

Анодный

Заземлители

Катодная защита



© 2025 Mash-xxl.info Реклама на сайте