Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потеря эксергии от необратимости процесса

Потеря эксергии от необратимости процесса  [c.131]

Таким образом, эксергетический КПД составляет 32,5 против 67,6%, полученного на основе энергетического баланса (КИТ). Низкий эксергетический КПД нагревательной печи обусловлен большими потерями эксергии от необратимости процесса горения (17,4%), неравновесного  [c.25]

Эксергетический анализ теплотехнологических установок позволяет наметить некоторые рекомендации по термодинамическому их совершенствованию. Например, для уменьшения потерь эксергии от необратимости процесса горения сжигание топлива необходимо осуществлять с максимальным предварительным подогревом компонентов горения. Для уменьшения потерь эксергии от необратимости процесса теплообмена необходимо стремиться осуществлять теплообмен с минимальным перепадом температур между теплоносителями. При этом, однако, следует отметить, что при выборе оптимальной технологической схемы наряду с показателями термодинамической эффективности должны учитываться технико-экономические факторы, а также эксплуатационная надежность установки.  [c.26]


Эксергетический анализ теплотехнологического процесса указывает, например, на пути повышения его термодинамической эффективности. Так, повышение температуры подогрева окислителя, а также подогрев газообразного топлива ведут к повышению температуры продуктов сгорания, вследствие чего снижаются потери эксергии от необратимости процесса горения. Повышение параметров вырабатываемого в ЭТА пара способствует уменьшению потерь от неравновесного теплообмена.  [c.102]

Рассмотрим, что представляет собой потеря эксергии по формулам (9.13) и (9.14), как она связана с приращением энтропии от необратимости процесса. Выполним это на примере последней формулы и проиллюстрируем потерю эксергии на диаграмме Ts (рис. 9.8).  [c.132]

Низкий термодинамический КПД агрегата обусловлен потерями, возникающими в процессе передачи теплоты от топлива, обладающего химической энергией высокого потенциала, к технологическому продукту и особенно к водяному пару с энергией низкого потенциала. В рассматриваемом случае потери от неравновесного теплообмена составляют 22, а потери от необратимого горения 23,8 %. Вместе с тем потери эксергии с уходящими газами в ЭТА по эксергетическому балансу составляют 1,3 против 7,1 % по тепловому балансу, что объясняется низким температурным потенциалом уходящих газов, а следовательно, и относительно малой их ценностью.  [c.102]

Эксергетический анализ процесса в котле указывает, например, на пути повышения его термодинамической эффективности. Так, повышение температуры подогрева воздуха вызывает повышение температуры горения, что в свою очередь приводит к снижению потери эксергии при горении. Повышение параметров пара приводит к уменьшению потерь от необратимости теплообмена. При этом эксергетический КПД котла увеличится.  [c.61]

По оси ординат представлены затраты эксергии, по оси абсцисс отложена добавочная сверх неизбежной температурной депрессии разность температур на теплопередачу. На графике кривые сходятся в одной точке на оси ординат (минимальная работа одноступенчатого процесса). График отражает только основную эксергетическую потерю из-за необратимости от перепада 254  [c.254]

Для прямого обратимого термодинамического цикла эксергетический КПД равен единице г]ех = 1)> а для необратимого он меньше единицы (Лех < 1) (рис. 8.32, 8.33). Отклонение величины т/ех от единицы показывает наличие принципиально устранимых потерь эксергии, уменьшение которых возможно при более рациональном проведении процессов и использовании более совершенного оборудования. В результате открывается возможность инженерного поиска путей и технических решений в области совершенствования тепловых машин, так как высвечиваются подлинные потери эксергии, которые с помощью технических мероприятий могут быть уменьшены и в предельном (идеальном) случае полностью устранены.  [c.72]


Соответствующая эксергетическая диаграмма показана на рис. 4.5, б. Из нее видно, что эксергетический баланс дает наиболее полную информацию об энергетических превращениях в системе. Он показывает, сколько полезной, работоспособной энергии затрачено, сколько получено и сколько потеряно вследствие необратимости, вызванной термодинамическим несовершенством процесса. КПД показывает (в отличие от теплового коэффициента) степень приближения процесса к идеальному только 46 % подведенной эксергии пошли в дело . Остальные 54 % потеряны. Несмотря на то что КПД существенно меньше 100 %, такой нагрев более эффективен, чем непосредственное электрическое или печное отопление отсюда и стремление к использованию теплоты от теплоэлектроцентралей (ТЭЦ) и теплонасосных установок (ТНУ).  [c.164]

На рис. 7.2 представлена диаграмма Грассмана — Шаргута рассматриваемой компрессионной теплонасосной установки. Здесь видны все потери эксергии в элементах установки в результате протекающих в них необратимых процессов. Величина потери эксергии в каждом элементе установки соответствует уменьшению ширины полосы эксергии и условно изображается заштрихованным треугольником, переходящим в выгнутую стрелку >, (эксергетические потери в i-м элемензе установки). В установку подводится эксергия Е, равная электрической мощности электродвигателя 1, поскольку эксергия электрической энергии не характеризуется энтропией. В электродвигателе происходит потеря эксергии равная сумме потерь электрической энергии в машине и приводе. Следовательно, эксергия на выходе из электродвигателя El = E l — Dj. Эксергия на входе в компрессор Eh = Ef Ey, где v — эксергия паров теплоносителя, выходящего из испарителя V. Эта суммарная эксергия преобразуется в компрессоре в эксергию сжатых паров теплоносителя. Эксергия на выходе из компрессора Е и = Eii — D , где — эксергетические потери в компрессоре, причем Dk )д. Очевидно, эксергия на входе в конденсатор Е щ = Е . В конденсаторе будет потеря эксергии D , связанная с теплопередачей при конечной разности температур между теплоносителем и внешним приемником теплоты и поэтому эксергия на выходе из конденсатора Щи = Ц - De- Большая часть " этой эксергии отдается потребител/о в виде теплового потока повышенной температуры другая часть, равная Е т - Е", = Eiv, есть эксергия на входе в дроссель IV. При дросселировании теплоносителя возникает потеря эксергии от необратимости процесса Одр, вследствие чего эксергия на выходе из дросселя Ei = Е п — Одр. Эксергия на входе в испаритель Е = iV + Е где Щ — эксергия теплового потока, подводимого в испаритель из окружающей среды ее значение Е д = Q I — То/Т )л О, так как Г] То. По этой же причине и потери эксергии в испарителе на конечную разность температур также будут близки нулю. Следова1ельно, эксергия на выходе из испарителя Е = V.  [c.311]

Для теплотехнологической установки основными потерями эксергии, как уже отмечалось в гл. 2, являются потери от необратимости процесса горения и неравновесного (необратимого) теплообмена между теплоносителем и технологическим сырьем. Эти потери, как и потерн зксер-гии при смешении потоков с различной температуро и др., в тепловом балансе отражения не находят.  [c.101]

Процессы, протекающие в теплообменном аппарате (теплообменнике), как и в любом реальном аппарате, необратимы и сопровождаются потерей эксергии [7, 26, 44]. В теплообменниках низкотемпературных установок наибольшую долю в общем балансе потерь составляют потери эксергии от конечной разности температур. Удельные затраты на создание температурного напора резко увеличиваются при уменьшении уровня температур, поэтому в таких теплообменниках используют весьма малые температурные напоры 5—1 К на уровне азотных и 1—0,5 К на уровне гелиевых температур. Для малых температурных напоров необходимо увеличение поверхности теплопередачи, что приводит к увеличению массогабаритных характеристик и стоимости теплообменника, поэтому к теплообменникам криогенной техники предъявляются повышенные требования в отношении интенсивности теплообмена и теплопередачи. Кроме того, при малых температурных напорах существенное значение приобретают вторичные эффе1сгы осевая (продольная) теплопроводность по конструкции теплообменника, гидравлическая и тепловая неравномерности, теплопритоки из окружающей среды.  [c.357]


Из рис. 23.5,6 видно, что больше половины работы, которую термодинамически можно было бы получить, если бы все процессы были обратимыми, теряется вследствие необратимости горения и передачи теп-чс ТЫ от [ азов к воде и пару в котлоагрегате. Процессы во всех остальных агрегатах ТЭС мгеют достаточно высокую степень термодинамического совершенства, причем потери эксергии в конденсаторе составляют всего 3,5%. Это понятно, ибо пар на входе в конденсатор имеет столь низкие параметры, что практически уже не может совершать работу.  [c.214]

В настоящее время дли оценки влияния необратимости нспользуют-гй два метода. В основу метода эксергетических по-т о к о в положен подсчет потоков эксергин рабочих тел, входящих в систему, подводимой теплоты и потоков эксергии, покидающих систему. При этом учитываются эксергия потока рабочего тела по уравнению (737), эксергия потоков теплоты по уравнению (7,38), а также подводимая и отводимая организованная энергия / , г. е, работа всех видов. У1,ля определ( ННя эксергии рабочих тел и теплоты удобно использован, эксергетические диаграммы. Если рабочее ге.ло, покидающее систолу, имеет ненулевую эксергию, то она учитывается только и тех случаях, когда рабочее тело предназначено для получения от него работы в каких-либо других установках (например, сжатый воздух от компрессора, предназначенный для привода пневматических машин). При наличии необратимых процессов в системе суммарный поток отводимой эксергии всегда меньше суммарного потока подводимой эксер-гнп на величину эксергетических потерь. Термодинамическое совер-шенпво системы характеризуется эксергетичсским КПД  [c.374]

Вычислить убыль удельной эксергии пара (в условиях стационарного потока), проходящего через д) цилиндр высокого давления и е) цилиндр низкого давления. Определить отсюда потерю полной работы, получаемой от установки, обусловленную необратимостью процесса, в ж) цилиндре высокого давления и з) цилиндре низкого давления. Проверить ответы к пп. ж и з , воспользовавшись выражением для ToAS , где Го — температура внешней среды и А5с — производство энтропии, связанное с необратимостью процесса (разд. 15.2).  [c.449]

МИКИ. Многочисленные разработки приложения основных следствий второго закона термодинамики к расчету тепловых процессов показали, что наиболее рациональным является использование следствий понятия обратимости и необратимости процессов максимально возможной работы (эксергии) и величины Го2А5 — потерь возможной работы (эксергетических потерь). Эксергия дает представление о предельных возможностях преобразования энергии при обратимых процессах. Эксергети-ческие потери характеризуют степень отклонения необратимых (т. е. реальных) процессов от обратимых. Использование эксергии как количественной характеристики обратимых процессов, и эксергетических потерь как количественной характеристики необратимых (реальных) процессов составляет суть термодинамического метода анализа энергетических установок.  [c.9]


Смотреть страницы где упоминается термин Потеря эксергии от необратимости процесса : [c.247]    [c.19]    [c.161]    [c.406]   
Смотреть главы в:

Техническая термодинамика и теплопередача  -> Потеря эксергии от необратимости процесса



ПОИСК



Необратимость

Потеря эксергии

Потеря эксергии потока в необратимых процессах

Процессы и потери в ЖРД

Процессы необратимые

Эксергия



© 2025 Mash-xxl.info Реклама на сайте