Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности процесса теплоотдачи при испарении

Особенности процесса теплоотдачи при испарении  [c.422]

В этой ситуации определяющим процессом является испарение пленки жидкости, на которое при данных режимных параметрах должно быть затрачено вполне определенное количество тепла при любом уровне теплового потока. Унос жидкости из пленки в ядро потока и обратный процесс орошения ее корректируют затраты тепла на испарение пленки через паросодержание, при котором происходит истощение пленки, т. е. кризис теплоотдачи. Механизм этой коррекции заключается в следующем. Волновой унос капель жидкости из пленки (срыв капелек с гребней волн) при данных физических параметрах и скорости потока, видимо, не связан с определенным уровнем тепловой нагрузки, а вторая составляющая (пузырьковый унос), конечно, зависит от величины теплового потока при этом, чем выше тепловой ноток, тем интенсивнее кипение в пленке и, следовательно, больше выброс капель в ядро потока. Это уменьшает количество жидкости в пленке, снижая паросодержание в момент кризиса. Поэтому, чем короче канал и, стало быть, выше тепловая нагрузка, тем ниже критическая мощность. Тот же эффект (снижение критической мощности) можно получить не укорачиванием канала, а при помощи ников тепловыделения в канале, особенно в выходной его части [121.  [c.39]


В случае массообмена задание граничных условий имеет некоторые особенности. Чтобы познакомиться с ними, рассмотрим процессы массоотдачи в двухкомпонентную среду или от нее. Практический интерес представляют процессы массообмена и теплообмена при испарении, конденсации, сорбции и т. п. Наприм-ер, при испарении жидкости образующийся пар переносится путем диффузии в окружающую парогазовую смесь и одновременно происходит теплоотдача между парогазовой смесью и поверхностью жидкости.  [c.454]

Отмеченные особенности в характере распределения t j и а по длине трубы парогенератора отражают всю сложность взаимного влияния отдельных факторов на процесс теплообмена при поверхностном кипении. Действительно, при понижении давления усиливается относительное влияние конвекции в однофазной среде и ослабляется влияние механизма переноса теплоты непосредственно В форме теплоты испарения. Поэтому при низких давлениях влияние скорости на интенсивность теплообмена оказывается более значительным. В этих условиях вследствие роста истинной скорости жидкой фазы, обусловленного повышением паросодержания потока, интенсивность теплоотдачи по длине трубы возрастает, что сопровождается понижением температуры стенки. При понижении температуры стенки уменьшается число активных зародышей паровой фазы и это приводит к ослаблению влияния механизма переноса, обусловленного про цессом парообразования. В то же время вследствие прогрева основной массы жидкости по ходу потока увеличивается толщина пристенного двухфазного слоя и, следовательно, улучшаются условия для роста паровых пузырей. По-видимому, при переходе от области конвективного теплообмена в  [c.264]

Тд = 34,5 °С, т = 350 мксек). Первая стадия соответствует быстрому разогреву жидкости, но температура еще не достигает значения Т 149 °С, при котором начинается интенсивное спонтанное зародышеобразование. Когда в поле зрения попадают сравнительно крупные готовые центры, то можно заметить растущие на них пузырьки. Их максимальный размер не намного превышает толщину прогретого слоя жидкости. Тепловые возмущения, вызванные этими пузырьками, почти не нарушают плавной зависимости температуры от времени. На второй стадии [Т Т ) в пристеночном слое жидкости появляется масса флуктуационных зародышей, вырастающих до видимых размеров (фотографии 1 —5). В отличие от готовых центров они возникают на случайных местах. Резкое увеличение парообразования приводит к появлению особенности на осциллограмме. Третья стадия процесса связана с формированием вокруг проволочки парового чулка (4—6), который возникает из-за слияния пузырьков. Теплоотдача проволочки ухудшается, ее температура начинает быстро подниматься. Тепловое влияние проволочки на жидкость теперь незначительно. Паровой чулок некоторое время увеличивается в размерах за счет испарения в него перегретой жидкости, а затем захлопывается (7,8 — четвертая стадия). Для того чтобы не расплавить проволочку, подача тока прекращается вскоре после возникновения чулка. Характерные времена Ат для разных стадий отсчитываются от начала особенности т = т 350 мксек, когда температурное возмущение г] порядка 5.10 °С.  [c.200]


Особенностью метода первапорации является наличие фазового перехода-испарения, который связан с активной теплоотдачей. Для поддержания требуемого температурного режима процесса необходима компенсация теплоотдачи испарения путем внешнего теплопод-вода. Как правило, в существующих установках достаточно предварительного подогрева разделяемой смеси до рабочей температуры. Однако, такой метод накладывает ограничение на длину мембранного модуля протекая вдоль мембран, смесь не должна остыть ниже допустимой температуры. Поэтому в установках с большой производительностью ставят параллельно несколько мелких мембранных модулей или организуют ступенчатый подогрев рабочей смеси после каждого цикла испарения.  [c.587]

Отличие условий теплообмена при кипении на одиночной трубе и пучке труб обусловлено тем, что во втором случае при малых g и J3 теплоотдача зависит не только от процесса парообразования, но и от конвективного переноса тепла, вызванпого движением парожидкостной смеси [12, 1, 391. В [39] предложена физическая модель, поясняющая особенности теплообмена при кипении на пучке. В [40] влияние пучка объясняется не только конвективным теплопереносом, но и испарением ншдкости в пузыри во время их подъема, сближения и контактирования с перегретым слоем жидкости у каждого последующего ряда труб.  [c.217]

Графики изменения основных параметров рабочих процессов и температуры внутренней стенки по длине трубки оптимального при данной совокупности значений параметров совокупности опг змеевикового парогенерирующего канала приведены на рис. 4.17. Длина трубки такого канала составляет 29,166 м, число витков — 51, а коэффициент потерь давления — 0,9208. Из этого рисунка видно, что змеевиковый модуль является теплонапряжен ным элементом, особенно в зоне поверхностного кипения, где плотность теплового потока достигает 2-10 Вт/м . В этой же зоне коэ( х )ициент теплоотдачи к дифениль-ной смеси характеризуется наибольшими значениями и остается достаточно высоким в области испарения пристенной пленки жидкости. В обеих зонах значения тепловых нагрузок на 50. ..  [c.83]

Подсчет количества испаренной влаги с поверхности влажного материала затрудняется, во-первых, тем, что при конвективной сушке 0 =/ только в первый период — период постоянной скорости сушки, и, во-вторых, трудностью определения коэффициента теплоотдачи а. В это.л случае формулы для теплообмена сухих материалов дают заниженные значения, особенно для процессов теплооблшиа при свободной конвекции.  [c.196]


Смотреть страницы где упоминается термин Особенности процесса теплоотдачи при испарении : [c.283]   
Смотреть главы в:

Термодинамика и теплопередача  -> Особенности процесса теплоотдачи при испарении



ПОИСК



2.61 — Особенности процесса

Испарение

Теплоотдача



© 2025 Mash-xxl.info Реклама на сайте