Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выращивание кристаллов из газообразной фазы

Широко распространено мнение, что выращивание монокристаллов из газообразной фазы не имеет большого практического значения ввиду малых скоростей роста, присущих этому методу. Действительно, скорость роста монокристаллов из газообразной фазы обычно равна сотым долям мм/ч, что на несколько порядков ниже, чем при вытягивании кристаллов из расплава. Рост из газообразной фазы применяется в основном для выращивания тонких эпитаксиальных пленок, используемых в технологии полупроводниковых приборов, и для получения небольших монокристаллов тугоплавких материалов, а также полупроводниковых соединений, которые плавятся с разложением. Кроме того, поскольку высокопроизводительные методы выращивания монокристаллов из расплавов не всегда обеспечивают высокую однородность их свойств, то для получения особо качественных небольших кристаллов полупроводников используются методы выращивания из газообразной фазы. Эти методы, естественно, не устраняют все причины, приводящие к дефектности кристаллов. Процессы выращивания монокристаллов из газообразной фазы тоже весьма чувствительны к колебаниям внешних условий и составу питающей фазы. Однако влияние этих колебаний значительно сглажено благодаря малым скоростям роста, что способствуют приближению к более равновесным условиям роста.  [c.250]


Метод диссоциации или восстановления газообразных химических соединений оказывается весьма эффективными для выращивания из газообразной фазы монокристаллических слитков тугоплавких соединений, компоненты которых при приемлемых технологических температурах обладают незначительными давлениями паров. В этом методе для получения монокристаллов из газовой фазы используются химические реакции. Источник состоит из газообразных молекул сложного состава, содержащих атомы кристаллизующегося вещества. Кристалл заданного состава образуется в результате химической реакции, протекающей на поверхности затравки или подложки (или вблизи нее) и приводящей к выделению атомов кристаллизующегося вещества.  [c.259]

Выращивание кристаллов из газовой фазы, как и выращивание из жидких растворов, можно производить при сравнительно низких температурах, что важно при получении монокристаллов тугоплавких, инконгруэнтно плавящихся или испытывающих полиморфные превращения соединений. К достоинству газофазных методов также относится возможность использования газообразных компонентов или соединений для их доставки к месту роста кристалла.  [c.314]

Процессы переноса играют важную, а зачастую и определяющую роль в формировании кристалла, в образовании дефектов в кристалле, в процессах легирования и т.д. Более детально процессы переноса будут рассмотрены ниже при анализе процессов выращивания из жидкой и газообразной фаз.  [c.221]

Раздел 2. Выращивание кристаллов из газообразной фазы  [c.250]

С технологической точки зрения методы выращивания кристаллов из газообразной фазы делятся на три большие группы, отличающиеся способом доставки атомов от источника к растущему кристаллу  [c.250]

Остановимся на методах выращивания кристаллов из газообразной фазы более подробно.  [c.257]

При выращивании кристаллов из газообразной фазы в проточных системах методом сублимации-конденсации пары исходного вещества вводятся в зону кристаллизации потоком инертного газа (водород, аргон и  [c.259]

Вакансии, 89 Вектор Бюргерса, 98 Вицинальные грани, 183 Включения второй фазы, 116 Выращивание кристаллов из газообразной фазы, 250 лимитирующая стадия, 254 массоперенос в вакууме, 251  [c.366]

Образование и исчезновение дислокаций. Обычно Д. возникают при образовании кристалла из расплава или из газообразной фазы (см. Кристаллизация). Методы выращивания бездислокац. монокристаллов очень сложны и разработаны только для немногих в-в. После тщательного отжига кристаллы содержат обычно 10 —10 Д. на 1 м . Притягивающиеся Д. с противоположными векторами Бюргерса, лежащие в одной плоскости скольжения, при сближении уничтожают друг друга (аннигилируют, рис. 5, б, в, г). Если такие Д. лежат в разных плоскостях скольжения, то для их аннигиляции требуется переползание. Поэтому при высокотемпературном отжиге, способствующем переползанию, плотность Д. понижается. Искривление ат. плоскостей вблизи Д. изменяет сечение рассеяния рентг. лучей и эл-нов. На этом основаны рентг. и электронно-микроскопич. методы наблюдения Д. (рис. 8).  [c.165]


СУБЛИМАЦИЯ (от лат. sublimo — высоко поднимаю, возношу), возгонка, переход в-ва из крист, состояния непосредственно (без плавления) в газообразное происходит с поглощением теплоты фазовый переход I рода). С.— одна из разновидностей парообразования , возможна во всём интервале темп-р и давлений, при к-рых твёрдая и газообразная фазы сосуществуют. Необходимая для С. энергия наз. теплотой сублимации. Зависимость между теплотой С., давлением насыщенных паров над ТВ. телом и темп-рой в условиях равновесного перехода выражается Клапейрона — Клаузиуса уравнением. С. металлич. кристаллов приводит к образованию одноатомных паров ионные кристаллы, испаряясь, часто образуют в газовой фазе полярные молекулы мол. кристаллы образуют пары, состоящие из молекул. Осн. кинетич. характеристикой С. явл. скорость С.— масса в-ва, сублимирующего в ед. времени. Зависимость предельной скорости С. в-ва от темп-ры и св-в газообразной фазы определяет выбор в-в для теплозащиты космич. аппаратов, спускающихся с околоземной орбиты на Землю. С. широко применяется также для очистки твёрдых в-в (возгонка с последующим выращиванием чистых кристаллов в газовой среде). СУБМИЛЛИМЕТРОВАЯ СПЕКТРОСКОПИЯ, исследования спектров в-в в субмиллиметровом диапазоне длин волн Субмиллиметровые волны ( 100—1000 мкм) занимают промежуточное положение в спектре эл.-магн. волн между длинноволновым И К излучением и СВЧ диапазоном. Они долго оставались последним белым пятном на шкале электромагнитных волн. Их освоению и использованию препятствовала невозможность непосредственного перенесения в этот диапазон методов генерирования, усиления и канализации излу-  [c.730]


Смотреть страницы где упоминается термин Выращивание кристаллов из газообразной фазы : [c.438]   
Смотреть главы в:

Основы материаловедения и технологии полупроводников  -> Выращивание кристаллов из газообразной фазы


Основы материаловедения и технологии полупроводников (2002) -- [ c.250 ]



ПОИСК



Выращивание кристаллов из газообразной фазы лимитирующая стадия

Выращивание кристаллов из газообразной фазы массоперенос в вакууме

Выращивание кристаллов из газообразной фазы метод сублимации-конденсации

Выращивание кристаллов из газообразной фазы метод химических реакций

Выращивание кристаллов из газообразной фазы метод химического транспорта

Газообразная фаза

Кристаллы, выращивание

П фазы



© 2025 Mash-xxl.info Реклама на сайте