Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фабри- Перо когерентного излучения

Путем наблюдения за интерференционными полосами проверяли когерентность света от разных колец и от различных частей одного кольца. Таким способом было установлено, что когерентные свойства света в кольцах аналогичны когерентным свойствам лазерного излучения в центральном пятне. Поэтому было высказано предположение, что кольца возникают из-за рассеяния лазерного света на оптических неоднородностях в самом кристалле. Следовательно, кольцевая картина аналогична той, которая возникает при анализе лазерного света с помощью внешнего эталона Фабри Перо.  [c.43]


Интерферометр Фабри — Перо как резонатор лазера. Для получения генерации излучения в активной среде, т. е. создания направленного когерентного пучка света, имеющего высокую интенсивность, необходим оптический резонатор, настроенный на заданную длину волны.  [c.208]

Резонатор представляет собой такую же двухкомпонентную систему, как и ИФП. Однако он имеет значительно большее расстояние между зеркалами. Часто одно из зеркал делают полупрозрачным, а другое — полностью отражающим. Принцип работы резонатора по физике образования интерференционной картины совпадает со сферическим эталоном Фабри — Перо. Между зеркалами резонатора находится активная среда. Электромагнитная волна, возникающая в активной среде, многократно вызывает в этой среде новые акты вынужденного испускания, вследствие отражения между зеркалами ИФП. Таким образом в оптическом резонаторе происходит накопление электромагнитной энергии. Резонатор играет важнейшую роль в работе лазера, так как он определяет пространственную и временную когерентность генерируемого излучения.  [c.209]

Интерферометр Фабри—Перо как резонатор лазера. Для получения эффекта генерации излучения, т. е. создания когерентного и направленного излучения, необходим оптический резонатор, настроенный на определенную длину волны. Он представляет собой ИФП с зеркалами сравнительно небольших размеров, между которыми помеш ается активная среда (см. 3). Часто одно из зеркал делают полупрозрачным, а другое — полностью отражаюш им. Коэффициент отражения R зеркал выбирается в зависимости от заданного усиления активной среды и может лежать в пределах 0,2—0,98. Чаще всего стремятся к увеличению параметра Rt. Лавина фотонов, возникающая в активной среде и увлекающая за собой все новые и новые порции фотонов, оказывается как бы зажатой между двумя зеркалами. В оптическом резонаторе происходит накопление электромагнитной энергии. Оптический резонатор определяет пространственную и временную когерентность лазерного излучения, а следовательно, существенно влияет на форму и ширину генерируемой спектральной линии.  [c.128]

Явление оптической бистабильности, по-видимому, может найти разнообразные применения в оптических устройствах важного прикладного значения. Поэтому мы остановимся на этом явлении и довольно подробно изложим его теорию. Рассмотрим экспериментальную схему, представленную на рис. 9.1. Когерентное световое излучение лазера (поле Е1) падает на зеркало, от зеркала частично отражается, а частично проходит в среду. Здесь оно распространяется в виде волны и достигает второго зеркала. Затем тоже частично отражается ( 2)1 з частично выходит из системы. Нас интересует, как связано поле Е прошедшей волны с полем Е1 на входе. В дальнейшем будем считать, что резонатор Фабри—Перо, изображенный на рис. 9.1, настроен в резонанс (или почти в резонанс) с полем Е, падающей волны. Если среда отсутствует, то мощность прошедшего света /7- пропорциональна входной мощности / , причем коэффициент пропорциональности зависит от расстройки резонатора и его резкости (ширины его резонансов). Качественно новые явления могут возникать, если резонатор заполнен веществом, для которого поле падающего света оказывается резонансным или почти резонансным. В отличие от обычного случая лазера, активное вещество которого некогерентно накачивается извне, в нашем случае в отсутствие когерентного поля Ес вещество находилось бы в основном состоянии. Такое вещество должно поглощать по-  [c.231]


Появление лазеров вызвало интенсивное развитие методов внутр. М, с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом мы. устройства, применяемые как внеш. модуляторы, номещаются внутри оптического резонатора лазера. Используя разл. способы внутр. модуляции, получают любой вид М. с. амплитудный, частотный, фазовый и поляризационный. Частотой излучения лазера управляют, изменяя добротность оптич. резонатора лазера, напр. менян оптич. длину резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект достигается путём изменения показателя преломления среды, заполняющей резонатор, для чего используется электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием К-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо изменяя мощность её возбуждения, либо используя всцомогат. возбуждение, приводящее к-перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или полупроводниковых лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением является модуляция величины обратной связи лазера, т. е. коэф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и потому условия генерации выполняются лить в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно получить, заменяя одно из зеркал на систему зеркал, образующих интерферометр Фабри — Перо. Коэф. отражения такого резонатора зависит от расстояния между зеркалами, изменяя к-рое можно модулировать интенсивность излучения и получать т. н. гигантские импульсы, мощность излучения в к-рых существенно превосходит мощность непрерывной генерации. Наконец, излучение лазеров также модулируют, изменяя добротность оптич. резонатора путем введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе элек-  [c.184]

Примером возможности повышения длины когерентности и мощности является гелий-неоновый лазер фирмы Spe tra Physi s (США), модель 125, где в резонаторе установлен эталон Фабри-Перо. Кроме того, в нем применена высокочастотная накачка, а вдоль трубки расположены постоянные магниты. Эти усовершенствования и высокое качество оптических элементов позволили получить мощность излучения без эталона до 120 мВт, а с эталоном 60—60 мВт с длиной когерентности более 10 м.  [c.38]

Первые лазеры на красителях с синхронизацией мод накачивались импульсными лампами. Пример устройства такого лазера представлен на рис. 6.1. Этот лазер накачивается ксено-новой импульсной лампой, помещенной в двойной эллиптический отражатель. Длительность накачки составляет около 1 МКС, а энергия равна примерно 100 Дж. Насыш ающийся поглотитель помещен в кювету, находящуюся в оптическом контакте с глухим зеркалом. Как уже было показано, такое расположение оптимально, так как оно позволяет добиться когерентного перекрытия в поглотителе падающего и отраженного импульсов, что облегчает достижение насыщения поглотителя. В качестве насыщающегося поглотителя для лазера на красителе родамин 6G пригоден краситель DOD I. Частота излучения лазера перестраивается эталоном Фабри—Перо. Так как с изменением длины волны усиление и поглощение в обоих красителях меняется, то для новой длины волны необходимо заново подобрать концентрацию насыщающегося поглотителя, так  [c.216]



Смотреть страницы где упоминается термин Фабри- Перо когерентного излучения : [c.174]    [c.430]    [c.260]    [c.430]   
Основы оптики (2006) -- [ c.258 ]



ПОИСК



Излучение когерентное

Когерентная (-ое)

Когерентность

Перила

Перова

Рен (перо)

Фабри и Перо



© 2025 Mash-xxl.info Реклама на сайте