Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллизация энергетика

Введение. Нестационарные процессы теплопроводности имеют важное значение в различных отраслях техники, например в энергетике (пусковые и нестационарные режимы работы машин и теплообменных устройств), в технологии металлов (термическая обработка, процессы кристаллизации) й т. п.  [c.214]

Турбинная лопатка — святая святых современной авиации и энергетики, ибо это самая напряженная деталь газовой и паровой турбины ее прочностью и жаростойкостью определяются и предельно достижимые скорости самолетов, и экономичность гигантских энергетических систем. Обычно лопатки льют из жаропрочных сплавов, обладающих зернистой структурой. Границы между зернами — уязвимое место, откуда начинается разрушение при тепловых ударах — резких сменах температур, неизбежных после каждого запуска или остановки. Инженеры известной моторостроительной фирмы Пратт-Уитни пришли к выводу, что лучше всего будут работать лопатки, состоящие из целого кристалла и лишенные непрочных границ между зернами. Специальный литейный процесс с направленной кристаллизацией действительно позволил получить такие лопатки. Эксперименты показали, что монокристаллические лопатки выдерживают вдвое больше тепловых ударов, чем обычные.  [c.30]


Свойства изделий из спеченного ВеО- Полученные из порошкового оксида бериллия изделия обладают весьма ценными свойствами. В спеченном оксиде бериллия удается реализовать специфические природные физические свойства этого оксида и получить материал с исключительно высокой теплопроводностью, большой механической прочностью, отличной термостойкостью. Оксид бериллия имеет исключительную способность рассеивать радиоактивное излучение высоких энергий, что послужило причиной применения этого материала в ядерной энергетике в качестве различных элементов тепловых реакторов. Технические свойства изделий из оксида бериллия могут существенно зависеть от технологических методов производства. Некоторые свойства определяются главным образом плотностью обожженных изделий. Чем больше плотность, чем больше она приближается к теоретической, тем выше могут быть показатели этих свойств. В зависимости от методов оформления изделий и температуры окончательного обжига плотность спеченного оксида бериллия может составлять 0,9—0,99 тео- ретической. Твердость хорошо спеченного ВеО по шкале Мооса 9, микротвердость 15,2 ГПа. Механические свойства спеченного оксида бериллия как в холодном, так и в нагретом состоянии зависят главным образом от плотности, характера кристаллизации и наличия - примесей, образующих инородную фазу. Известное влияние оказывает также метод изготовления изделий. Предел проч ности при сжатии при нормальной температуре (по определению большинства исследователей) образцов плотностью 2,9 г/см составляет около 1500 МПа.  [c.132]

РАДИОАКТИВНЫЕ ИЗОТОПЫ — неустойчивые, самопроизвольно распадающиеся изотопы хнмич. элементов. В процессе радиоактивного распада происходит превращение атомов Р. и. в атомы др. химия. элемента (неразветвленпый распад) или яеск. др. химич. элементов (разветвленный распад). Известны след, тины радиоактивного распада а-распад, р-распад, К-захват, деление атомных ядер. В технике, не связанной с атомной энергетикой, используются Р. и. с распадом первых трех типов (в основном с р-распадом). В природе существует ок. 50 естественных Р. п. с помощью ядерных реакций получено ок. 1000 искусственных Р. и. В технике используются только нек-рые из искусственных Р. и. — наиболее дешевые, достаточно долговечные и обладающие легко регистрируемым излучением. Основной количественной хар-кой Р.и. является активность,определяемая числом радиоактивных распадов, происходящих в данной порции Р. и. в единицу времени. Осн. единица активности — кюри. соответствует 3,7-10 распадов в сек. Осн. качественные хар-ки Р. и. — период полураспада (время, в течение к-рого активность убывает вдвое), тин и энергия ( жесткость ) излучения. Р. и. широко используются в науке и технике как радиоактивные индикаторы и как источники излучений. Наиболее важные области применения — радиационная химия, изучение процессов в доменных и мартеновских печах, кристаллизации слитков, износа деталей машин и режущего инструмента, процессов диффузии и самодиффузии в металлах и сплавах. В измерит, технике Р. и. применяются для бесконтактного измерения таких параметров, как плотность, хим. сост. различных материалов, скорость газовых потоков и др. В гамма-дефектоскопии используются  [c.103]



Смотреть страницы где упоминается термин Кристаллизация энергетика : [c.95]   
Физические основы ультразвуковой технологии (1970) -- [ c.512 ]



ПОИСК



Кристаллизация

Энергетика



© 2025 Mash-xxl.info Реклама на сайте