Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость распространения геометрическое построение для фазовая

Значение уравнения в частных производных Гамильтона в теории распространения волн. Выше было выяснено, что уравнение в частных производных Гамильтона (8.7.17) в оптике выражает принцип Гюйгенса в дифференциальной форме. Хотя принцип Гюйгенса основан на предположении о волновом характере движения, построение с помощью этого принципа последовательности волновых фронтов является методом геометрической, а не физической оптики. Для того чтобы более глубоко изучить связь между уравнением в частных производных Гамильтона и принципами физической оптики, мы несколько преобразуем определение волнового фронта. До сих пор мы рассматривали волновые поверхности в связи с распространением элементарных световых возбуждений в геометрической оптике, однако они имеют не меньшее значение и в физической оптике при изучении распространения световой волны определенной частоты. При этом волновые поверхности могут быть определены как поверхности равной фазы. Скорость распространения света является в то же время скоростью распространения фазового угла, например ф, в направлении, перпендикулярном волновым поверхностям.  [c.315]


J4.2.3. Геометрические построения для определения скоростей распространения и направлений колебаний. Многие результаты, относящиеся к фазовой и лучевой скоростям н к направлениям колебаний, можно проиллюстрировать с помощью некоторых геометрических построений.  [c.621]


Основы оптики Изд.2 (1973) -- [ c.6 , c.7 , c.8 , c.9 , c.10 , c.11 , c.12 , c.13 , c.14 , c.15 , c.61 , c.718 ]



ПОИСК



Построения геометрические

Скорость распространения

Скорость фазовая

Скорость фазовая — См.: Фазовая скорость



© 2025 Mash-xxl.info Реклама на сайте