Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дисперсия — Свойства пластической деформации

Для объяснения результатов эксперимента была предложена модель, использующая представления о ротационной неустойчивости пластической деформации [40, 42]. Считается, что хаотическая структура дислокаций деформируемого твердого тела испытывает ротационные перестроения, при которых часть дислокаций собирается в конечные стенки — ротационные элементы (диполи или квадруполи частичных дисклинаций) (см. рис. 4.6, г, ё). Превращение в структуре протекает лавинообразно (по типу фазового перехода [4, И]), так как взаимодействие диполей инициирует зарождение новых диполей в полях напряжений, созданных уже имеющимися диполями (см. п. 4.1). Во время нарастания плотности дисклинационных диполей 6 и уменьшения плотности хаотических дислокаций р изменяются физико-механические свойства материала, в частности, микротвердость, дисперсия упругой деформации и т. д. При дальнейшем увеличении пластической деформации р становится настолько малой, что ее не хватает для поддержания роста упорядоченной структуры. Сами диполи после остановки теряют активность (например, из-за механизмов релаксации (см. рис. 4.10), поэтому плотность 6 активных диполей падает. Вследствие малости количества очагов перестройки хаотические дислокации вновь начинают размножаться под действием внешней нагрузки, вызывая новое изменение физических параметров твердого тела. Дальнейшее увеличение р повторно вызывает лавинообразную перестройку хаотической структуры в ротационную и т. д. Таким образом, возникает колебательный режим в неравновесной двухкомпонентной термодинамической системе (см. 1).  [c.136]


Моделирования композита эквивалентной однородной средой бывает недостаточно для исследования локальных пластических деформаций или разрушения, дисперсии волн и решения других задач, определяемых как раз неоднородностью свойств материала по координатам 29). Из асимптотических методов, используемых для решения задач такого типа, наибольшее распространение и обоснование получили метод гомогенизации 30) и метод Бахвалова —Победри [31, 32]. Главная идея метода гомогенизации состоит в использовании в качестве малого параметра характерного размера ячейки, при этом предполагается, что решение статической краевой задачи теории упругости представляет собой медленно меняющуюся функцию координат, на которую накладываются локальные периодические пульсации. Метод Бахвалова —Победри основан на разделении медленных и быстрых переменных в аналогичных задачах.  [c.19]


Механические свойства металлов Издание 3 (1974) -- [ c.38 ]



ПОИСК



Деформация пластическая

Дисперсия

Дисперсия — Свойства

Пластическая деформаци

Пластические свойства



© 2025 Mash-xxl.info Реклама на сайте