Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рабочее тело магнитогидродинамического генератора

В последние годы большое внимание привлекает к себе проблема непосредственного превращения тепловой энергии в электрическую в так называемых плазменных генераторах (иначе магнитогидродинамических — МГД — генераторах). Если отнести рис. 4-32 к такому генератору, то процесс 1-2 — приготовление рабочего тела — плазмы — с подводом тепла к ней он происходит при температурах порядка 2 000—3 000° С процесс 2-3 — получение электрической энергии в плазменном генераторе. Другой способ осуществления процесса 2-3, т. е. получение полезной энергии в верхней ступени — обычный, в тепловом двигателе. В этом случае процесс 1-2 — горение топлива В камере сгорания с образованием рабочего тела (в зависимости от условий горения их температура также может достигать  [c.194]


Плазма — это уникальное рабочее тело качественно новой энергетической техники. Она может быть и низкотемпературной (до 10 К), и высокотемпературной (более 10 К). Низкотемпературная плазма используется в магнитогидродинамических (МГД) генераторах и термоэлектронных преобразователях (ТЭП), а высокотемпературная плазма -в термоядерных энергетических установках. Плазма применяется также в лазерах в качестве активной среды (например, в газоразрядных лазерах) или источника возбуждения лазерной активной среды (электронная накачка).  [c.280]

Н. п. в природе, технике и лабораторных условиях. Неидеальной является плазма в жидких металлах, полупроводниках, электролитах (ЭЛТ, рис. 1), в глубинных слоях Солнца и планет-гигантов Солнечной системы, плазма белых карликов. Неидеальной является плазма рабочих тел в магнитогидродинамических генераторах на парах щелочных металлов (МТД), ракетных двигателях с газофазным ядерным реактором (ЯЭУ) плазма, возникающая в установках по исследованию термоядерного синтеза путём лазерного, электронного и взрывного обжатий мишени (см. Лазерный термоядерный синтез, Инерциальное удержание). Н. п. возникает за сильными ударными волнами при взрывах или при высокоскоростном ударе. В установках плазменной технологии неидеальная плазма возникает при импульсных электрических разрядах.  [c.253]

Из пяти типов таких преобразователей (электрохимические генераторы, фотоэлектрические преобразователи, термоэлектрические генераторы, термоэмиссионные преобразователи, магнитогидродинамические генераторы) только первые два являются действительно прямыми преобразователями. В полезную внешнюю работу в электрохимических генераторах превращается внутренняя энергия рабочих тел, а в фотоэлектрических преобразователях — лучистая энергия, причем это превращение (рабочий процесс) протекает при постоянной температуре.  [c.170]

Управление движением плазмы в электрических и магнитных полях является основой использования плазмы как рабочего тела (11.4.5.6°) в различных двигателях для прямого превращения внутренней энергии (П.4.1.2°) в электрическую плазменные источники электрической энергии, магнитогидродинамические (МГД) генераторы).  [c.236]


В настоящее время наибольшее научно-техническое развитие получил магнитогидродинамический метод (МГД-,метод) прямого преобразования энергии. Идея этого метода основана на том, что при пересечении проводником линий индукции в нем возникает ЭДС. В МГД-генераторе таким проводником является электропроводящий газ (плазма). Высокотемпературный газ (2500— 3000°С) в МГД-генераторе выполняет двойную роль в сопле перед генератором внутренняя энергия газа преобразуется в кинетическую энергию noTOiKa, т. е. газ -является термодинамическим рабочим телом, а в генераторе кинетическая энергия потока преобразуется в электрическую энергию, т. е. газ выполняет роль силовой обмотки электрической машины. Можно поэтому говорить, что МГД-гбнератор представляет собой совмещенную с тепловым двигателем электрическую машину, а термодинамический цикл энергетической установки с МГД-генератором принципиально ничем не отличается от известных циклов газо- и паротурбинных установок. Использование высокой температуры рабочего вещества (которую вполне выдерживают неподвижные части генератора) приводит к генерации электроэнергии МГД-методом с КПД до 50—60%.  [c.69]

Развитие науки и тexFlики за последние два десятилетия характеризуется возросшим интересом к термодинамике и значительным расширением приложений ее к различным явлениям. В качестве примера можно указать на проблемы прямого, или безмашинного получения электрической энергии в топливных элементах, термоэлектрических генераторах, термоэмиссионных преобразователях, магнитогидродинамических генераторах. Существенно увеличился также перечень рабочих тел и областей их использования, а в изучении свойств веществ были получены новые важные результаты. Все это делает необходимым более глубокое изучение свойств веществ и систематизацию накопленных в этой области сведений.  [c.5]

Из шести типов прямых преобразователей энергии, в которых энергия тел преобразуется в энергию электрического тока (электрохимические генераторы, фотоэлек-1рические преобразователи, термоэмиссионные преобразователи, магнитогидродинамические генераторы, термоэлектрические преобразователи, квантовые преобразователи) только первые два являются в полной мере прямыми преобразователями. В полезную внешнюю работу в электрохимических генераторах превращается внутренняя энергия рабочих тел, а в фотоэлектрических преобразователях — лучистая энергия Солнца, причем это превращение (т. е. рабочий процесс) протекает при постоянной температуре.  [c.568]

На протяженки последних 130 лет был создан целый ряд энергетических устройств, основанных на взаимодействии электрического и магнитного полей с движущимися электрическими зарядами. Метод прямого преобразования энергии, рабочим телом в котором является нагретый ионизированный газ, в принципе может обеспечить очень высокий КПД и потому вызывает большой интерес в качестве альтернативы паротурбинным теплоэнергетическим установкам для получения электрической энергии — это магнитогидродинамический генератор или сокращенно МГД-генератор. Его работа основана на взаимодействии рабочего тела с магнитным полем (рис. 5.21,6). ЭДС создается за счет движения в магнитном поле электронов и ионов нагретого газа.  [c.103]

Разнообразное использование Н. п. определяется простотой её создания. Газоразрядная плазма применяется в газовых лазерах и источниках связи, в плаа-мохим. процессах и процессах очистки газов, для обработки поверхностей, в разл. технол. и металлургич. процессах. Н. и. как рабочее тело используется при преобразовании тепловой энергии в электрическую, в магнитогидродинамических генераторах и термоамие-сионном преобразователе. В плазмотроне Н, и. выполняет роль теплоносителя. Вводимая в плазму электрич. энергия передаётся электронам, а от них — атомам или (и) молекулам газа и нагревает его. Уд. энергия, вводимая в такой газ, заметно выше энергии в пламени газовой горелки.  [c.354]


Первое направление поиска этих решений связано с увеличением начальной температуры рабочего тела и исключением промежуточных ступеней преобразования энергии (паровой котел, электрогенератор и др.). К этому направлению относятся магнитогидродинамические генераторы электроэнергии (МГДГ), работающие с высокой начальной температурой рабочего тела. Эту температуру удается реализовать из-за отсутствия движущихся частей в генераторе, имеющихся во всех тепловых двигателях (поршень, колесо турбины и т. п.).  [c.446]

Менее распространены прямые преобразователи энергии, в рабочем процессе которых отсутствует стадия сгорания топлива в этих устройствах полезная внешняя работа в форме энергии электрического тока получается непосредственным превращением внутренней энергии тел или полей в электрическую энергию. В зависимости от характера рабочего процесса различают электрохимические преобразователи (генераторы), в которых электрическая энергия выделяется в результате токообразующих химических реакций между рабочими веществами солнечные батареи, превращающие лучистую энергию Солнца в электрическую энергию посредством фотоэлектрических эффектов магнитогидродинамические генераторы, в которых энтальпия сильно нагретого и поэтому ионизованного газа при течении в магнитном поле преобразуется в электрическую энергию.  [c.140]


Смотреть страницы где упоминается термин Рабочее тело магнитогидродинамического генератора : [c.258]   
Техническая термодинамика Изд.3 (1979) -- [ c.418 , c.423 ]



ПОИСК



Магнитогидродинамический генератор

Рабочее тело



© 2025 Mash-xxl.info Реклама на сайте