Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Профили тонкостенные — Жесткость

Профили тонкостенные — Жесткость обобщенная 298 — Момент сопротивления кручению обобщенный 298 — Центр изгиба 102 - под действием кручения — Коэффициент концентрации — Формулы для подсчета 407 Профили тонкостенных стержней 169  [c.554]

Как известно, открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка заделана так, что депланация сечения в заделке становится невозможной, то будет иметь место так называемое стесненное кручение, при котором в поперечном сечении возникают не только касательные, но и значительные нормальные напряжения. Поэтому желательно принимать меры, устраняющие кручение в балках прокатного профиля. Обычно по этой причине ставят симметричное сечение из двух швеллеров. Если же профиль один, а нагрузка значительна, то ее нужно выносить из главной плоскости так, чтобы она проходила через точку С (на рис. 313, б такое положение нагрузки показано пунктиром на рис. 313, г дан один из возможных вариантов конструктивного оформления вынесения нагрузки). В этом случае участок балки длиной х полностью уравновешивается силами Р, Q x) = P и моментом М х) = Рх кручения не будет. Поэтому точка С называется центром изгиба (иногда — центром жесткости). Центры изгиба всех сечений балки расположены на прямой, которая называется осью жесткости балки (рис. 313, б).  [c.340]


Рассматривая эту эпюру, мы замечаем, что возникающие в раме крутящие моменты относительно невелики. В связи с этим возникает мысль, нельзя ли ими вообще пренебречь. И действительно, это возможно. Но так поступают обычно в случае, если жесткость стержней на кручение относительно невелика. Таким свойством обладают, как нам хорошо известно, открытые тонкостенные профили, например двутавровый профиль.  [c.132]

Характерные особенности замкнутых профи л е й. В трубчатых стержнях, согласно формуле (159), максимальное касательное напряжение получается в наиболее узком месте профиля. Это не имеет места в тонкостенных стерл<нях с открытым профилем, наоборот, в стержнях открытого профиля с гладким контуром, как правило, наибольшее касательное напряжение возникает на контуре в самых толстых местах профиля. При равной площади сечений и одинаковой величине крутящего момента максимальное результирующее напряжение, возникающее в тонкостенном стержне открытого профиля, будет значительно превосходить таковое в тонкостенном стержне замкнутого профиля, а жесткость при кручении стержня открытого профиля при тех же условиях будет значительно. меньше жесткости стержня замкнутого профиля. Отсюда следует, что с точки зрения чистого кручения тонкостенные стержни замкнутого профиля значительно более выгодны, чем стержни открытого профиля.  [c.281]

Одним из часто встречающихся элементов конструкций является тонкостенная обшивка и профили жесткости, соединенные сварными точками. Такие соединения в конструкциях чаще всего работают на сжатие. Для определения прочности таких соединений на сжатие испытывают типовые сварные панели (фиг. 134). В табл. 26 приведены результаты испытаний на сжатие одного из типов сварных панелей. При испытаниях панелей на сжатие разрушение происходит во всех случаях от потери устойчивости, т. е. при достижении усилием сжатия критического значения.  [c.198]

Разработаны специальные корытообразные профили, неравнобокие, угловые, С-образные и многие другие, которые находят применение в тонкостенных конструкциях. Гнутые профили экономичны, так как при относительно малой площади поперечного сечения и малом весе они обладают повышенной жесткостью, что является существенно важным при работе элементов на изгиб, продольное сжатие. Кручение и т. п. Примеры гнутых и прессованных элементов соответственно приведены на рис. 2-1, а и б.  [c.18]

При производстве сварных конструкций рекомендуется применять листовой прокат, фасонные профили, в особенности тонкостенные, гнутые, прессованные, штампованные заготовки, обеспечивающие возможность применения легких сварных изделий повышенной жесткости и устойчивости.  [c.658]


Модели цилиндрических оболочек из белой жести, подкрепленные кольцевым набором, применяются для испытаний на устойчивость при внешнем давлении. Известны эксперименты, проводившиеся с целью выявления влияния на устойчивость расположения шпангоутов относительно срединной поверхности, жесткости шпангоутов на кручение, осевых сил и других факторов. В этих экспериментах обшивка оболочек (рис. 11.4) имела толщину h = 0,34 мм. Средние значения предела текучести и временного сопротивления материала составляли — 200 МПа, Og = = 280 МПа. Диаметр цилиндра варьировался в пределах 100— 140 мм, длина в интервале 180—300 мм. Для подкрепления оболочек применялись уголковые профили 4x3x0,34, 6x3x0,34 и шпангоуты таврового сечения из двух уголков 4x3x0,34, соединенных стенками. Описание технологии изготовления моделей оболочек из жести и результаты испытаний на внешнее давление приведены в работе [3]. В этой же работе содержатся примеры использования тонкостенных металлических сварных моделей для исследования устойчивости и несущей способности таких судовых конструкций, как палубные перекрытия, гофрированные переборки, двутавровые и коробчатые балки, подкрепленные панели.  [c.258]

Тонкостенные гнутые профили с толщиной стенки 0,5 мм и болбе обладают высокой прочностью и жесткостью при небольшом весе. Заменяя более тяжелый горячекатаный прокат (швеллеры, зетовый и другие профили), они являются прогрессивным материалом для металлических конструкций.  [c.245]

Эффективный коэффициент концентрации напряжений ка зависит от многих факторов. Большое значение имеет форма поперечного сечения составлена ли балка из штампованных листов, прокатных профилей или из четырех сваренных между собой листов. В зависимости от этого кс может колебаться от 2 до 4 и выше. Важно, как осуществляется связь поперечных балок с боковинами. Коэффициент ка будет меняться в зависимости от соотношения жесткостей элементов, образующих узел, от конструктивного его оформления. Желательно, чтобы узел и примыкающие элементы не требовали усиливающих деталей. Нецелесообразно сочетать сравнительно толстостенные литые балки и тонкостенные штампованные боковины. Коэффициент к а существенно зависит от качества сварных швов. Влияние непроварен-ного шва эквивалентно резкому изменению сечения. Проф. В. Б. Медель полагает, что при изготовлении боковин и поперечных балок из штампованных профилей и хорошо продуманного их соединения можно принять ка= 3.  [c.113]

Для металлоконструкций из алюмиАиевых сплавов целесообразно использовать тонкостенные элементы, устойчивость которых обеспечивается благодаря достаточному количеству ребер жесткости. Эти жесткие тонкостенные элементы получают преимущественно прокаткой или прессованием. Широкое применение находят также гнутые профили, штампованные и гофрированные элементы из алюминиевых сплавов <рис. 193).  [c.374]


Смотреть страницы где упоминается термин Профили тонкостенные — Жесткость : [c.267]    [c.140]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.0 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.0 ]



ПОИСК



Брусья — большой жесткости с поперечным сечением тонкостенным замкнутого профиля

Жесткость тонкостенных стержней замкнутого профиля при свободном кручении

Профили тонкостенные — Жесткость обобщенная 298 — Момент сопротивления кручению обобщенный

Профиль тонкостенный



© 2025 Mash-xxl.info Реклама на сайте