Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Рауса-Гурвица

Теорема Рауса-Гурвица. Согласно доказанной теореме Ляпунова, знаки вещественных частей корней А,, характеристического уравнения  [c.426]

Теорема Рауса-Гурвица. Для того чтобы все корни уравнения (29) имели отрицательные вещественные части, необходимо и достаточно, чтобы имели место неравенства  [c.427]

Критерий Рауса-Гурвица. Для практического использования теоремы об устойчивости по первому приближению важно определить знаки вещественных частей характеристического уравнения. В частности, желательно иметь критерий, позволяющий по коэффициен-  [c.532]


Теорема (Критерий Рауса-Гурвица). Для того чтобы все корни уравнения (14) с вещественными коэффициентами и положительным старшим коэффициентом а имели отрицательные вещественные части, необходимо и достаточно, чтобы выполнялись неравенства  [c.534]

Теорема 2 (Критерий Рауса-Гурвица). Для того чтобы полином  [c.159]

Из критерия Рауса Гурвица и теоремы 2.1 следует, что невоз-мущеннос движение асимптотически устойчиво независимо от членов высших порядков в уравнениях возмущенного движения, если при До б нее опредетгители Гурвица положительны.  [c.100]

Далее приводятся два критерия устойчивости многочлена, причем суждение об устойчивости выносится, минуя вычисление корней. Первый — алгебраический критерий — без доказательства . Теорема 16.2 (Е. Раус, А. Гурвиц). Многочлен (16.1) устойчив тогда и только тогда, когда выполняется > О, i = 1,то, где Дг — главные центральные мпноры определителя Гурвица  [c.59]

КРИТЕРИИ ОТРИЦАТЕЛЬНОСТИ ВЕЩЕСТВЕННЫХ ЧАСТЕЙ КОР-0Й ХАРАКТЕРИСТИЧЕСКОГО УРАВНЕНИЯ. Как следует из теорем Ляпунова, для суждения об устойчивости движения по первому дриближению необходимо иметь в своем распоряжении точные сведения о знаках вещественных частей корней характеристического уравнения. Иначе говоря, нужно знать, как расположены [ орни характеристического уравнения на комплексной плоскости относительно мнимой оси. Когда все корни характеристического уравнения лежат слева от мнимой оси, т. е. имеют отрицательные вещественные части, полином, соответствующий развернутому определителю характеристического уравнения, называется ус-щойчивым полиномом. Решить вопрос об устойчивости или неустойчивости полинома можно без предварительного вычисления его корней с помощью специальных критериев устойчивости, предложенных Э. Раусом, А. Гурвицем, X. Найквистом, А. В. Михайловым [113] и др. В основе этих критериев лежат известные теоремы Коши о числе корней функции внутри замкнутого контура. Некоторые из таких критериев дают возможность не только установить распределение корней полинома на комплексной плоскости, но также и определить необходимые изменения параметров системы, для того чтобы сделать ее движение устойчивым.  [c.451]


Смотреть страницы где упоминается термин Теорема Рауса-Гурвица : [c.84]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Теорема Рауса-Гурвица



ПОИСК



Гурвиц

Рауса

Теорема Гурвица

Теорема Рауса



© 2025 Mash-xxl.info Реклама на сайте