Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые гармонические функции, связанные с упругими смещениями

I. Некоторые гармонические функции, связанные с упругими смещениями. В плоской теории упругости существует тесная связь между решениями граничных задач (первой и второй) и теорией аналитических функций комплексной переменной. Эта связь основана на известных представлениях Колосова—Мусхелишвили (см. Мусхелишвили [1]) для составляющих смещений и напряжений, с помощью двух пар аналитических функций эти представления имеют следующий вид  [c.595]


В третьей главе обсуждается постановка граничных и начально-граничных задач теории упругости, доказывается их единственность. Рассмотрению двумерных задач предшествует формулировка принципа Сен-Венана и его доказательство в случае нагружения цилиндрического стержня. Далее вводятся общие представления смещений через гармонические и через волновые функции, позволяющие свести некоторые важные задачи теории упругости к одной или нескольким последовательно решаемым классическим краевым задачам. Обстоятельно рассмотрены качественные вопросы, связанные с понятием сосредоточенной силы, нерегулярных решений задач теории упругости, возникающих при наличии на границе угловых линий, конических точек и т. п. Указанные решения легли в основу постановок задач механики хрупкого разрушения.  [c.7]


Смотреть главы в:

Трехмерные задачи математической теории упругости и термоупругости Изд2  -> Некоторые гармонические функции, связанные с упругими смещениями



ПОИСК



Мод связанность

Р связанное

Ряд гармонический

Ток смещения

Функция гармоническая



© 2025 Mash-xxl.info Реклама на сайте