Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая эквивалентность канонических распределений

Термодинамическая эквивалентность канонических распределений  [c.206]

Излагаемые ниже соображения основаны на том факте, что гидродинамические переменные а (г) соответствуют полу макроскопическим величинам, поскольку обрезающее волновое число Ajq было выбрано таким образом, чтобы пространственная ячейка с размерами / I/Ajq содержала большое число частиц. Тогда каждую из таких ячеек можно рассматривать как малую, но макроскопическую подсистему, взаимодействующую с другими ячейками через свои границы. Согласно общему принципу термодинамической эквивалентности статистических ансамблей (см. раздел 1.3.10 первого тома), можно считать, что энтропия S a) микроканонического ансамбля, определяемого условиями а г) = ft (r), является таким же функционалом от а (г) , как и энтропия Si a) локально-равновесного большого канонического ансамбля от (fl (r)) , если соответствующее фазовое распределение Qi q,p a) удовлетворяет условиям  [c.229]


Запись статистической суммы в виде (2.34) эквивалентна рассмотрению жидкости как термодинамического канонического ансамбля, в котором iV-частичная функция распределения (2.20) имеет вид  [c.108]

Покажем, что, за исключением немногих случаев, о которых будет сказано ниже, использование этих распределений для каждой из названных систем приводит в статистическом пределе (N- oo, V->oo, l//A = o = onst) к термодинамически эквивалентным результатам. Это означает, что каноническим и большим каноническим распределениями можно пользоваться также для описания изолированных систем, что практически является очень важным.  [c.206]

Итак, в соответствии с термодинамической эквивалентностью статистических ансамблей, энтропию микроканонического ансамбля в (1.3.125) можно заменить энтропией обобщенного канонического распределения Гиббса (1.3.130), которое описывает состояние с заданными значениями флуктуаций Аа . Считая флуктуации малыми, мы можем разложить S a N V) по отклонениям Аа- = а- — (fljeq- С учетом равенств (1.3.132) запишем  [c.73]


Смотреть страницы где упоминается термин Термодинамическая эквивалентность канонических распределений : [c.208]    [c.208]   
Смотреть главы в:

Термодинамика и статистическая физика  -> Термодинамическая эквивалентность канонических распределений



ПОИСК



В эквивалентное

Вид канонический

Распределение каноническое

Термодинамическая эквивалентность

Эквивалентность пар



© 2025 Mash-xxl.info Реклама на сайте