Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

см координат, обладающая ускорением Силы инерции

Основное содержание СТО, как подчеркивал Г. Минковский, состоит в установлении единой абсолютной пространственно-временной формы бытия материи — пространственно-временного мира (мир Минковского), геометрия которого псевдоевклидова. В этом мире различным системам отсчета соответствует в общем случае различная метрика с коэффициентами y v (х) пространства-времени. Например, в произвольной неинерциальной системе координат S метрические коэффициенты y[ v оказываются функциями координат X этой системы, что приводит в итоге к появлению ускорения свободной материальной точки относительно S и сил инерции, выражающихся через производные первого порядка от тензора по соответствующим координатам. Кинематически силы инерции характеризуются тем, что вызываемые ими ускорения свободных материальных точек не будут зависеть от их масс. Таким же свойством обладают и гравитационные силы, поскольку, как показывает опыт, гравитационная масса тела равна его инертной массе. Этот фундаментальный факт привел Эйнштейна к мысли, что гравитационное поле должно описываться подобно полю сил инерции метрическим тензором, но уже в римановом пространстве-времени.  [c.158]


В 8.4 были выписаны общие уравнения статической теории упругости и соответствующие граничные условия, там же была сформулирована постановка задачи теории упругости. В общем случае движение упругого тела происходит во времени и элементы его обладают ускорениями, поэтому более общей будет постановка динамической задачи теории упругости. В декартовых координатах эти ускорения представляют собою вторые производные от неремещений по времени. Применяя иринцип Далам-бера, мы получим уравнения движения упругого тела, добавив к действуюхцим силам Fi силы инерции  [c.430]


Смотреть страницы где упоминается термин см координат, обладающая ускорением Силы инерции : [c.379]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.31 ]



ПОИСК



Силы инерции



© 2025 Mash-xxl.info Реклама на сайте