Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Траектория во внешнюю область солнечной системы

Как было показано ранее, полеты во внешнюю область солнечной системы по траекториям минимального расхода топлива характеризуются крайне продолжительными временами перелета, особенно при полетах за орбиту Юпитера. Здесь даже такие малые начальные ускорения, как Ио-< 10" , могут помочь в убыстрении этих перелетов. На рис. 6.63 даны два примера траекторий перелетов с малой тягой к Юпитеру и Сатурну.  [c.235]


Вступая во внешнюю область Солнечной системы, занятую орбитами планет юпитерианской группы, мы оказываемся в области колоссальных расстояний планет от Солнца и от Земли, а также между собой. Теперь радиусы сфер действия планет измеряются десятками миллионов километров, длительности полетов — годами и десятками лет. Мощные атмосферы планет юпитерианской группы в сочетании с сильным тяготением совершенно по-новому ставят вопрос о посадке на планеты. Делается затруднительным выход космических аппаратов на низкие орбиты вокруг планет из-за все того же их мощного тяготения, а зоны высокой радиации, существующие по крайней мере вокруг Юпитера и Сатурна, грозят целости научной аппаратуры, не говоря уже о жизни человека, даже на пролетных траекториях, если они проходят чересчур близко от планеты.  [c.402]

Быстрые перелеты во внешние области солнечной системы. Из всех профилей, изображенных на рис. 6.50, последние два 14 и 15), представляющие собой траектории кеплерова движения, в основном предназначены для полетов во внешние районы солнечной системы. По всей вероятности, такие баллистические траектории больше подходят для полетов автоматизированных зондирующих ракет к Юпитеру и Сатурну (задачи 4-й группы), чем для полетов человека в необъятные глубины внешней части солнечной системы. Так как полет по траекториям профиля О требует колоссальных затрат времени, как это видно из рис. 6.43, в данном случае желательно, чтобы переходная гелиоцентрическая траектория была почти параболической или даже гиперболической. На рис. 6.58 представлена зависимость времени перелета от начальной гелиоцентрической скорости (взятой по отношению к величине круговой скорости на орбите Земли) при одностороннем полете к планетам юпитеровой группы. Кружки с точками в центре, находящиеся в левой части графика, соответствуют полетам к Юпитеру, Сатурну и Урану по минимальным траекториям. Наиболее характерной особенностью этих графиков является резкое уменьшение времени перелета при возрастании начальной скорости до параболической. Выход на параболическую траекторию требует добавления к круговой орбитальной скорости на орбите Земли, равной 97 700 фут/сек, еще около 40 ООО фут/сек, это значит, что скорость после выхода с заданной спутниковой орбиты высотой 300 морских миль должна быть равной примерно 53 100 фут/сек, т. е. требуемое приращение скорости должно составить 53 100—24 900 = 28 200 фут/сек. Из графика на рис. 6.42 видно, что для профиля О начальный прирост скорости при полете к Юпитеру равен примерно 21 500 фут/сек, при полете к Сатурну —27 ООО фут/сек и к Урану — 25 ООО фут/сек. Поэтому добавочная ступень, обеспечивающая прирост Лу = 6700 фут/сек, могла бы уменьшить время перелета к Юпитеру с 2,9 года до 2,1 года при приросте Аг = 3200 фут/сек — время перелета к Сатурну с 6 лет до 2,7 года при приросте  [c.227]



Космическая техника (1964) -- [ c.227 ]



ПОИСК



ВНЕШНИЕ ТРАЕКТОРИИ

Система солнечная

Траектория

Траектория е-траектория

Траектория системы



© 2025 Mash-xxl.info Реклама на сайте