Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм роста слоисто-спиральный

Иметь в виду, что вероятность образования случайных зародышей зависит от градиента температуры в расплаве Ж ехр(—В/ДГ) и уменьшается с уменьшением скорости кристаллизации, то есть, например, при слоисто-спиральном механизме роста растущей грани V (ЛТ) ), поэтому уменьшение скорости кристаллизации способствует уменьшению вероятности образования центров новой фазы.  [c.241]

Рост кристалла из паровой фазы, в основном, происходит по слоистому или слоисто-спиральному механизмам с соответствующими зависимостями скорости роста V кристаллизующейся поверхности от пересыщения (см. гл. 4).  [c.254]


Поверхностная кинетика роста кристаллов. Рост кристаллов в основном осуществляется по слоистому или слоисто-спиральному механизмам. Теория слоисто-спирального роста кристаллов впервые была создана применительно к конденсации из газовой фазы Бартоном, Кабрерой и Франком. Эта теория занимает центральное место для роста кристаллов из газовой фазы, но она существенна также и для роста из разбавленных растворов, и даже в какой-то степени для роста из расплавов. Рассмотрим коротко основные положения этой теории.  [c.187]

Слоисто-спиральный механизм роста аналогичен описанному механизму роста соверщенного кристалла со ступенью (только ступенька в нащем случае незарастающая). На ступени, возникающей благодаря винтовой дислокации, имеются изломы вследствие существования тепловых флуктуаций. Адсорбированные атомы диффундируют к ступени, а затем к изломам, где они встраиваются в рещетку кристалла, в результате чего ступень движется. Поскольку один конец ступени зафиксирован в точке выхода дислокации, то ступень может двигаться только путем вращения вокруг этой точки. При определенном пересыщении каждый участок на прямой ступеньке движется с одинаковой линейной скоростью. Поэтому участок ступеньки вблизи линии дислокации имеет более высокую угловую скорость и за одинаковое время должен сделать большее число оборотов, чем далеко отстоящие от линии дислокации участки. По мере увеличения кривизны участка ступени в области выхода дислокации равновесное давление пара над этим участком повышается, местное пересыщение понижается и, следовательно, линейная скорость движения этой части ступени замедляется. Спираль закручивается до тех пор, пока радиус кривизны в центре ее не достигнет значения критического радиуса двумерного зародыша. По достижении стационарного состояния спираль вращается как единое целое вокруг линии дислокации, при этом форма ее приближенно может быть описана уравнением архимедовой спирали.  [c.186]

Пусть рост кристалла из газовой фазы в основном происходит по слоистому или слоисто-спиральному механизмам. В этом случае источниками ступеней на растущих сингулярных (вицинальных) гранях могут быть винтовые дислокации. Ступень, образованная винтовой дислокацией, при встраивании в нее частиц закручивается в спираль, и образующиеся последовательные витки формируют эшелон ступеней. На растущей поверхности при этом возникают пирамиды (рис. 4.27), причем концентрация ступеней, образующих эти пирамиды, велика и практически не зависит от количества винтовых дислокаций, выходящих на поверхность роста. На поверхности кристалла, контактирующего с питающей средой, присутствуют адсорбированные частицы того же вещества, из которого состоит кристалл. Адсорбированные частицы совершают тепловые колебания в трех направлениях — перпендикулярно плоскости и в двух параллельных плоскости. Флуктуации энергии при колебаниях первого типа приводят к отрыву частиц от поверхности и переходу их в газовую среду (испарение). Колебания второго типа создают условия для диффузионной миграции этих частиц по поверхности. Если над растущей поверхностью создается пересыщение, то начинается диффузия в окружающей среде и адсорбированном слое по направлению к ступени, на которой будет идти конденсация до тех пор, пока это пересыщение не  [c.187]


Механизм роста кристаллической грани определяется главным образом ее строением, как и в случае роста кристаллов из газообразной фазы (см. гл. 4). Атомно-щероховатые (несингулярные) поверхности растут по нормальному механизму. В этом случае плотность центров роста сопоставима с плотностью поверхностных атомов и, как показывают расчеты для случая роста кристаллов из расплава, скорость роста поверхности пропорциональна переохлаждению на фронте кристаллизации у АТ). Атомно-гладкие (сингулярные и вицинальные) поверхности растут по слоистому механизму при двухмерном зарождении ступеней роста V АТ ехр(— ДГ)) и по слоисто-спиральному механизму с участием винтовых дислокаций V (Д7 ) ). Анализ процессов роста кристаллов из раствора показывает, что в этом случае, так же как и в случае роста кристаллов из газообразной фазы (см. ниже), при малых пересыщениях зависимость скорости роста поверхности по слоисто-спи-ральному механизму от пересыщения близка к параболической, а при больщих пересыщениях становится линейной.  [c.220]


Смотреть страницы где упоминается термин Механизм роста слоисто-спиральный : [c.186]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.186 ]



ПОИСК



Г спиральные

Механизм роста

Рост пор

Спиральность



© 2025 Mash-xxl.info Реклама на сайте