Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодические волновые пакеты диспергирующие линейные

Другим характерным следствием нелинейности является существование уединенных волн. Волны с такими профилями в линейной теории диспергируют, но нелинейность уравновешивает дисперсию и приводит к волнам неизменной формы. Уединенные волны были обнаружены сначала как предельные случаи периодических волновых пакетов недавние исследования их взаимодействия и образования из произвольных начальных распределений показали, что их особая структура имеет самостоятельное значение. Мы вернемся к этим вопросам в гл. 17.  [c.466]


Параболическое уравнение 143 Перевала метод 102, 333, 336, 357 Периодическая волна с разрывами 55 ---- —, описываемая уравнением Бюргерса 112 Периодические волновые пакеты, волны на воде 421, 449, 531 ---, — диспергирующие линейные 9, 15, 349  [c.610]

Прежде всего следует обсудить вопрос о том, как развить далее подтверждаемый многими примерами общий результат Стокса существование периодических волновых пакетов является типичным свойством нелинейных диспергирующих систем. Эти решения являются аналогом решений вида (1.3) в линейной теории, но теперь уже не действует принцип суперпозиции. Однако, как уже было указано в связи с формулой (1.26), многие важные результаты линейной теории основываются на использовашш групповой скорости модулированных волновых пакетов. При этом переход к интегралу Фурье несуществен, так что можно построить теорию нелинейной групповой скорости. Соответствующие рассуждения проводятся в гл. 14 на основе уже упоминавшихся вариационных принципов. Зависимость дисперсионных соотношений от амплитуды приводит к ряду новых эффектов (например, к наличию двух групповых скоростей), которые обсуждаются в общем виде в гл. 15. Кроме исходных задач о поведении волн на воде, одной из главных областей приложения теории является нелинейная оптика, новая быстро развивающаяся область. Ряд приложений к обеим областям дается в гл. 16.  [c.21]


Линейные и нелинейные волны (0) -- [ c.9 , c.15 , c.349 ]



ПОИСК



Пакет

Пакет волновой

Периодические волновые пакеты



© 2025 Mash-xxl.info Реклама на сайте