Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема взаимности для динамических нагрузок

Равенство (4.70) представляет собой теорему взаимности для динамических нагрузок , аналогичную теореме взаимности Максвелла для статических нагрузок В нем говорится, что динамическое перемещение по к-я координате перемещения, обусловленное изменяющейся во времени по произвольному закону нагрузкой, соответствующей /-Й координате, равно перемещению по /-й координате, обусловленному той же самой нагрузкой, соответствующей к-п координате. Теорема справедлива для систем, обладающих формами движения как абсолютно жесткого тела, так и с колебательными формами движения, что можно видеть, подставив в интегральное соотношение (в) выражение (4.69) вместо (4.67).  [c.273]


Отдельные элементы матрицы можно рассматривать как коэффициенты влияния динамической жесткости. Из симметричности матрицы вытекает, что к этим коэффициентам также применима теорема о взаимности. Так как матрица динамических коэффициентов влияния будет диагональной, то отдельные движения фундамента будут независимыми друг от друга при этом А впиахви будет диагональной матрицей жесткости, а матрица В—матрицей инерции. Рассмотрим вначале случай статической нагрузки фундамента, так как именно этим случаем накладываются определенные ограничения на устройства опорных пружин.  [c.198]


Колебания в инженерном деле (0) -- [ c.273 ]



ПОИСК



Нагрузка динамическая

Теорема взаимности

Теорема взаимности для динамических



© 2025 Mash-xxl.info Реклама на сайте