Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб кривых брусьев с круговой осью

Вначале рассмотрим задачи, в которых распределение напряжений и перемещений не зависит от полярного угла 0. К ним относятся задачи об определении напряженного и деформированного состояния толстостенных труб, нагруженных внутренним и внешним равномерно распределенным давлением задача Лямэ), о чистом изгибе кривого бруса с круговой осью задача Головина), о вращающихся дисках.  [c.95]


Для тонкого кривого бруса с круговой осью дифференциальное уравнение изогнутой оси будет аналогично уравнению для прямого бруса (уравнение (79) стр. 124). Пусть А B D (рис. 334) представляет ось кругового кольца после деформации и и означает малые радиальные перемещения отдельных точек этой оси. Изменение кривизны оси стержня при изгибе можно исследовать, рассматривая элемент тп кольца по деформации и соответствующий, заключенный между теми же радиусами, элемент деформированного кольца (рис. 334, 6). Первоначальная длина элемента тп и его первоначальная кривизна будут  [c.337]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]


Технический справочник железнодорожника Том 2 (1951) -- [ c.129 ]



ПОИСК



Брус изгиб

Брус кривой

Брус круговой

Брусья кривые — Изгиб

Изгиб кривого бруса

Кривая изгиба

Кривые круговые брусья

Круговые Изгиб

Ось бруса

Очки

Очко 58, XIV



© 2025 Mash-xxl.info Реклама на сайте