Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы составные части

Рассматривается композиционный материал, состоящий из произвольно расположенных однородных фаз произвольной формы. В случае анизотропных фаз предполагается, что оси анизотропии каждого компонента направлены одинаково. При заданном макроскопическом нагружении композита напряжения и деформации в нем являются сложными функциями объемных долей Vi, характера распределения, формы и упругих характеристик компонентов. В этом разделе предлагаются зависимости, связывающие эффективные модули упругости композита с характеристиками его составных частей для осредненного напряженного и деформированного состояния в пределах каждой фазы. Хотя все вычисления справедливы для произвольного числа компонентов, здесь они проводятся для двухфазного ком-пвзита.  [c.68]


Механические свойства композиционных материалов и их составных частей меняются под влиянием окружающей среды и химического старения, особенно при изменении температуры н под действием воды (водяных паров) на полимерные композиты (см., например, Фрид [33], Стил [111], Цай [118]). Такие эффекты часто необратимы и приводят к изменению свойств материала со временем. Мы интересуемся здесь только способом, которым можно учесть эти влияния в определяющих уравнениях вязко-упругого материала. Детальное обсуждение физического и химического механизмов, приводящих к подобным изменениям, а также математическое их описание остаются вне рамок настоящей главы.  [c.129]

Поведение полученных намоткой волокном композитов аналогично поведению других типов слоистых материалов с расположенными под углом слоями армирующих компонентов. Поэтому разработанные для них аналитические методы могут быть использованы и для конструкций, получаемых намоткой. При рассмотрении этого вопроса с позиций макромеханики анализ композитов базируется на предположении, что каждый слой является анизотропным гомогенным монослоем. Монослой состоит из волокон, ориентированных под углом а или однонаправленных. Свойства монослоя обычно определяют экспериментальным путем, и анализ структуры строится путем перехода от одного слоя к другому. Микромеханический подход, наоборот, заключается в исследовании характеристик чувствительности составных частей материала, т. е. распределения напряжений и деформаций между армирующими волокнами и матрицей. При определении напряжений и деформаций по точкам принимают во внимание свойства армирующего материала и смолы, а также геометрию изделия. Этот анализ микронапряжений устанавливает, какие нагрузки может выдержать композит перед переходом через предел текучести в какой-то точке или перед достижением критических напряжений. Микромеханический подход применяется также для расчета характеристик композиционного материала по известным их значениям для входящих в его состав компонентов, а также для установления влияния их изменения на соответствующие свойства композита.  [c.227]

Композиты с полимерной матрицей — это армирующие волокна, монолитизированные с помощью какого-нибудь полимерного связующего (рис. 18.1). Фирмы, применяющие композиты для авиационно-космических целей, обычно не производят исходных компонентов волокйн и связующих. Заготовки им, как правило, изготавливает фирма-поставщик, располагая в заданном порядке необходимые составные части в установленных пропорциях. При этом заготовки частично отверждаются до такого состояния, чтобы их можно было обычными способами транспортировать и грузить. Такой еще не совсем готовый композиционный материал называется препрегом (в отличие от волокон, предварительно пропитанных связующим). Изготовление из него высококачественных конструкционных изделий в значительной степени зависит от качества препрега и таких факторов, как равномерность интервалов между волокнами, количество разрушенных волокон и их распределение, липкость смолы. Чтобы гарантировать выполнение стандартов качества, необходимо проводить визуальный контроль и прочностные испытания этих заготовок. Свойства, которые надлежит определять при анализе, обычно вносятся в прилагаемую спецификацию. Борное и углеродное волокна производятся и выпускаются в виде лент шириной до 76 и 305 мм соответственно. Иногда углеродное волокно выпускают в форме поперечно стеганых лент шириной до 305 мм, а для некоторых коммерческих целей — шириной до 1254 мм. Эти ленты пропитывают смолой методом мокрой пропитки (из раствора) или прессованием волокон при нагревании до Перехода смолы в В-стадию.  [c.257]


Общий признак всех композиционных материалов — существование границы раздела фаз, причем не обязательно между составными частями материала, находящимися в твердом состоянии. Вторая фаза может быть и жидкой, и газообразной [1, 2, 15, 16, 40]. Тогда пористые (с газовым твердым или жидким заполнением) однородные (псевдооднофазные) материалы следует считать также композиционными. И наоборот, любые двухфазные (и более) материалы могут рассматриваться как пористые. Пора — любое постороннее вещество (в газовом, жидком или твердом состояниях) внутри матрицы.  [c.10]


Смотреть страницы где упоминается термин Композиционные материалы составные части : [c.324]    [c.223]    [c.336]   
Неорганические композиционные материалы (1983) -- [ c.8 ]



ПОИСК



Композиционные материалы

Композиционные материалы, их составные части, терминология

Составные части



© 2025 Mash-xxl.info Реклама на сайте