Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб чистый кругового бруса

В качестве одной из задач исследуем распределение напряжений и перемещений при чистом изгибе кругового бруса (рис. 19). Ввиду того, что тензор напряжений не зависит от координаты ф, функцию напряжений берем в форме (6.44). Сформулируем граничные условия задачи в виде  [c.116]

Чистый изгиб кругового бруса  [c.513]

Вначале рассмотрим задачи, в которых распределение напряжений и перемещений не зависит от полярного угла 0. К ним относятся задачи об определении напряженного и деформированного состояния толстостенных труб, нагруженных внутренним и внешним равномерно распределенным давлением задача Лямэ), о чистом изгибе кривого бруса с круговой осью задача Головина), о вращающихся дисках.  [c.95]


Другой пример плоской задачи, в которой напряжения и деформации не зависят от полярного угла 9,— чистый изгиб кривых брусьев с круговой осевой линией ).  [c.99]

Рассмотрим чистый изгиб кривого бруса с круговой осевой линией радиуса Го (рис. 5.5). Предполагаем, что сечение бруса постоянно и представляет собой прямоугольник с шириной, равной 1.  [c.99]

Чистый изгиб кривых брусьев с круговой осью (фиг. 20). Постоянные А, В и С  [c.129]

Для простотн изложим зтот способ на примере линейного КЭ кругового бруса длиной 2а и радиуса R. Соотнопения для деформаций имеют вид (5.5). Стержневой идеей здесь является явное устранение из выражения потенциальной звергии деформации ложных сдвиговых и мембранных деформаций, появляющихся при чистом изгибе, т.е. функционал здесь берется в виде  [c.201]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]



Смотреть страницы где упоминается термин Изгиб чистый кругового бруса : [c.45]    [c.292]    [c.217]    [c.89]   
Курс теории упругости Изд2 (1947) -- [ c.217 ]



ПОИСК



Брус изгиб

Брус круговой

Изгиб чистый

Изгиб чистый бруса

Круговые Изгиб

Ось бруса



© 2025 Mash-xxl.info Реклама на сайте