Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перемещающаяся кавитация следах

Основные особенности цикла существования нестационарной каверны показаны на примере перемещающихся каверн, образующихся в потоке при обтекании твердого тела. На фиг. 4.1 представлена кинограмма, полученная с помощью высокоскоростной съемки кавитации около поверхности цилиндрического тела с оживальной носовой частью, образованной вращением дуги окружности с радиусом, равным 1,5 диаметра цилиндра. Образующая цилиндрической части тела касательна к образующей его оживальной носовой части. Каждый кадр на фиг. 4.1 представляет собой горизонтальную полосу, на которой видна часть оживала и расположенного за ним цилиндра. Ось тела совпадает с направлением потока, поток направлен справа налево. Последовательным моментам времени от верхнего кадра к нижнему соответствуют последовательные положения и размеры отдельных каверн. Съемка производилась с частотой 20 000 кадр/с, поэтому два последовательных кадра разделены промежутком времени 0,0005 с. Скорость воды составляла 21,35 м/с, а число кавитации К, определенное в разд. 2.6, было равно 0,30. Рассмотрим одну каверну, которая впервые появляется в виде пятнышка в центре круга на первом кадре. Сначала наблюдается относительно продолжительный и непрерывный процесс роста каверны, который заканчивается к моменту достижения ею максимального диаметра. Затем следует более быстрый процесс полного или почти полного схлопывания каверны. Согласно измерениям распределения давления на телах с оживальными носовыми частями [44], схлопывание происходит, когда каверна перемещается в области положительного градиента давления. Сразу после схлопывания каверна вновь начинает расти, достигая несколько меньшего размера, чем вначале, а затем опять схлопывается. Этот цикл  [c.121]


На скорость движения частиц абразива влияет также движение пузырьков газа, образовавшихся в результате кавитации жидкости под инструментом. Эти пузырьки, наблюдаемые в боковом зазоре, также движутся хаотически, но скорость их в несколько раз выше, чем скорость частиц абразива. При движении пузырьки увлекают за собой некоторые частицы, вокруг пузырьков образуется сгусток частиц, который перемещается вместе с пузырьком в боковом зазоре и иногда попадает под торец инструмента. Установлено, что это влечет за собой некоторое увеличение средней скорости движения частиц абразива. Следует также отметить, что интенсивно пульсирующие пузырьки расталкивают отдельные частицы абразива, способствуя его перемешиванию.  [c.49]

О природе кавитации и механизма ее разрушительного действия на гидравлические агрегаты и их элементы существует несколько гипотез, наиболее распространенная из которых сводится к следующему. При понижении давления в какой-либо точке потока жидкости ниже давления насыщенных ее паров при данной температуре жидкость вскипает (происходит ее разрыв), выделившиеся же пузырьки пара увлекаются потоком и переносятся в область более высокого давления, в которой паровые пузырьки конденсируются (смыкаются). Так как процесс конденсации парового пузырька (каверны) происходит мгновенно, частицы жидкости перемещаются к его центру с большой скоростью, в результате кинетическая энергия соударяющихся частиц жидкости вызывает в момент завершения конденсации (в момент смыкания пузырьков) местные гидравлические удары, сопровождающиеся резкими забросами давления и температуры в центрах конденсации. Если конденсация паровых пузырьков будет происходить у стенки канала, то последняя будет подвергаться со стороны движущихся частиц жидкости непрерывным гидравлическим микроударам. В результате при длительной кавитации под действием указанных гидравлических ударов и одновременном воздействии высокой температуры, развивающейся в центрах конденсации, происходит поверхностное разрушение (эрозия) деталей.  [c.45]

Однако последние наблюдения позволяют заключить, что кавитация и кавитационное разрушение поверхностей деталей гидроагрегатов происходит в основном в результате механического воздействия на них гидроударов при смыкании воздушных кавитационных каверн (пузырьков), а также в результате воздействия на поверхности развивающихся при этом высоких температур. Механизм явления схематически можно представить в следующем виде. При попадании расширившихся в зоне пониженного давления воздушных пузырьков в зону повышенного давления они с большой скоростью (скачкообразно) смыкаются (захлопываются), причем более мелкие из них растворяются в жидкости, а более крупные резко у.мень-шаются в объеме. Теоретические расчеты показывают, что скорости встречи стенок смыкающегося пузырька (каверн) могут достигать нескольких сотен метров в секунду. При этом частицы жидкости перемещаются с большей скоростью к центру пузырька, в результате чего кинетическая энергия этих частиц вызывает местные гидравлические удары с большими, мгновенно нарастающими забросами ударного давления в центре пузырька.  [c.47]


При истечении до отрыва потока от стенок давление в узком сечении потока приближается к давлению насыщенных паров. Как известно (см. подразд. 4.3), в потоке при таком давлении следует ожидать возникновения кавитации. Однако кавитационный режим течения при истечении в газовую среду не успевает сформироваться. Возникающая начальная стадия кавитации способствует проникновению газовой среды внутрь насадка. Начиная с этого момента струя жидкости после сжатия теряет взаимодействие со стенками насадка и уже не расширяется, а перемещается внутри насадка, не соприкасаясь с его стенками. Истечение становрггся таким же, как и при истечении через отверстие в тонкой стенке (см. подразд. 6.1), с теми же значениями коэффициентов б, ф и ц. Таким образом, при смене режима истечения происходит скачкообразное уменьшение расхода приблизительно на 20 % за счет существенного сокращения площади сечения потока.  [c.67]

Схематически механизм возникновения кавитации и его разрушительного действия сводится к следующему. При понижении давления жидкости в какой-либо Точке потока до некоторой величины жидкость вскипает (происходит ее разрыв), выделившиеся же пузырьки газа и пара увлекаются потоком и переносятся в область более высокого давления, в которой даровые пузырьки конденсируются, а газовые сжимаются (смыкаются). Так как процесс конденсации парового и сжатия газового пузырька происходит мгновенно, частицы жидкости перемещаются к его центру с большой скоростью, в результате кинетическая энергия соуда-  [c.44]

Следует отметить, что паяльник нужно перемещать в припое, не касаясь им облуживаемой поверхности, в противном случае эффект будет снижаться, так как кавитация происходит только в жидкой среде. Пайку производят после облуживання каждой из соединяемых поверхностей, которые сжимают, нагревают до расплавления припоя и охлаждают в сжатом состоянии. Отсутствие возможности визуально наблюдать процесс лужения ультразвуковым паяльником приводит к тому, что окисная пленка не всегда полностью  [c.73]


Смотреть страницы где упоминается термин Перемещающаяся кавитация следах : [c.164]    [c.189]    [c.55]   
Кавитация (1974) -- [ c.210 , c.211 ]



ПОИСК



Pan (Перемещать)

Кавитация

Кавитация в следах

Перемещающаяся кавитация

Следы



© 2025 Mash-xxl.info Реклама на сайте