Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Больцмана уравнение слабо взаимодействующих систем

Первое существенное замечание состоит в следующем. В классической теории кинетическое уравнение в пределе слабого взаимодействия представляет собой дифферешщальное уравнение относительно переменной р. Такая его форма обусловлена тем, что в случав слабого взаимодействия отклонение траекторий частиц при столкновениях очень мало. Как показано в разд. 11.6, предложенный Ландау вывод уравнения, пол вшего его имя, из уравнения Больцмана основан именно на этой идее. В квантовых системах не существует подобной эквивалентности между пределом слабого взаимодействия и пределом малого отклонения. В квантовой механике даже слабый потенциал взаимодействия может привести к очень сильной передаче импульса вследствие принципа нвопрвделвнности Гейзенберга. Квантовый аналог полного уравнения Больцмана по форме точно совпадает с уравнением (18.8.1) это уравнение известно под названием уравнения Юлинга — Уленбека. Единственное отличив от (18.8.1) состоит в том, что функция W связана с точным сечением рассеяния для упругих столкновений, соответствующих заданному межмолеку-лярному потенциалу. Сечение рассеяния (18.8.2) соответствует первому отличному от нуля приближению для точного сечения рассеяния, т. е. первому борновскому приближению ).  [c.251]


Уравнение (4.4)—это замечательное уравнение, называемое уравнением Власова. Оно совернленно отлично от уравнения Больцмана и полезно для описания системы слабо взаимодействующих материальных точек в течение короткого промежутка времени это случай разреженного газа, частицы которого взаимодействуют посредством сравнительно слабых дальподей-ствующих сил, например электроны в ионизованном газе (кулоновская сила) или звезды в звездной системе (гравитационная сила). Однако в обычном газе, когда частицы находятся близко одна от другой, межмолекулярная сила довольно велика следовательно, модель жестких столкновений, хотя и весьма грубая, при описании существенных особенностей системы оказывается точнее модели непрерывно распределенной слабой силы.  [c.73]


Смотреть страницы где упоминается термин Больцмана уравнение слабо взаимодействующих систем : [c.9]    [c.417]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.40 , c.222 ]



ПОИСК



Больцмана уравнение

Взаимодействие слабое



© 2025 Mash-xxl.info Реклама на сайте